These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28508866)

  • 1. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification.
    Kroupa DM; Vörös M; Brawand NP; McNichols BW; Miller EM; Gu J; Nozik AJ; Sellinger A; Galli G; Beard MC
    Nat Commun; 2017 May; 8():15257. PubMed ID: 28508866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics.
    Navarro-Pardo F; Zhao H; Wang ZM; Rosei F
    Acc Chem Res; 2018 Mar; 51(3):609-618. PubMed ID: 29260851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy level modification in lead sulfide quantum dot thin films through ligand exchange.
    Brown PR; Kim D; Lunt RR; Zhao N; Bawendi MG; Grossman JC; Bulović V
    ACS Nano; 2014 Jun; 8(6):5863-72. PubMed ID: 24824726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing light absorption by colloidal metal chalcogenide quantum dots via chalcogenol(ate) surface ligands.
    Giansante C
    Nanoscale; 2019 May; 11(19):9478-9487. PubMed ID: 31045198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Darker-than-black" PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands.
    Giansante C; Infante I; Fabiano E; Grisorio R; Suranna GP; Gigli G
    J Am Chem Soc; 2015 Feb; 137(5):1875-86. PubMed ID: 25574692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy.
    Yang X; Yang J; Ullah MI; Xia Y; Liang G; Wang S; Zhang J; Hsu HY; Song H; Tang J
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42217-42225. PubMed ID: 32805951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy level tuned indium arsenide colloidal quantum dot films for efficient photovoltaics.
    Song JH; Choi H; Pham HT; Jeong S
    Nat Commun; 2018 Oct; 9(1):4267. PubMed ID: 30323251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands.
    Liu X; Zhao S; Gu W; Zhang Y; Qiao X; Ni Z; Pi X; Yang D
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5959-5966. PubMed ID: 29345903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamic surface chemistry of colloidal metal chalcogenide quantum dots.
    Grisorio R; Quarta D; Fiore A; Carbone L; Suranna GP; Giansante C
    Nanoscale Adv; 2019 Sep; 1(9):3639-3646. PubMed ID: 36133571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics.
    Swarnkar A; Marshall AR; Sanehira EM; Chernomordik BD; Moore DT; Christians JA; Chakrabarti T; Luther JM
    Science; 2016 Oct; 354(6308):92-95. PubMed ID: 27846497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Absorbance Enhancement in PbS QD/Cinnamate Ligand Complexes.
    Kroupa DM; Vörös M; Brawand NP; Bronstein N; McNichols BW; Castaneda CV; Nozik AJ; Sellinger A; Galli G; Beard MC
    J Phys Chem Lett; 2018 Jun; 9(12):3425-3433. PubMed ID: 29857647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halide-, Hybrid-, and Perovskite-Functionalized Light Absorbing Quantum Materials of p-i-n Heterojunction Solar Cells.
    Beygi H; Sajjadi SA; Babakhani A; Young JF; van Veggel FCJM
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30283-30295. PubMed ID: 30107115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-Crosslinking Strategy for Efficient Quantum Dot Light-Emitting Diodes via Thiol-Ene Click Chemistry.
    Shin S; Kang K; Jang H; Gwak N; Kim S; Kim TA; Oh N
    Small Methods; 2023 Sep; 7(9):e2300206. PubMed ID: 37160696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface ligand chemistry on quaternary Ag(In
    Hoisang W; Uematsu T; Torimoto T; Kuwabata S
    Nanoscale Adv; 2022 Feb; 4(3):849-857. PubMed ID: 36131838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution Annealing Induces Surface Chemical Reconstruction for High-Efficiency PbS Quantum Dot Solar Cells.
    Liu X; Fu T; Liu J; Wang Y; Jia Y; Wang C; Li X; Zhang X; Liu Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14274-14283. PubMed ID: 35289178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films.
    Lin Q; Yun HJ; Liu W; Song HJ; Makarov NS; Isaienko O; Nakotte T; Chen G; Luo H; Klimov VI; Pietryga JM
    J Am Chem Soc; 2017 May; 139(19):6644-6653. PubMed ID: 28431206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the structures of organic semiconductor-quantum dot nanocomposites through ligand shell chemistry.
    Toolan DTW; Weir MP; Kilbride RC; Willmott JR; King SM; Xiao J; Greenham NC; Friend RH; Rao A; Jones RAL; Ryan AJ
    Soft Matter; 2020 Sep; 16(34):7970-7981. PubMed ID: 32766663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile and versatile ligand analysis method of colloidal quantum dot.
    Kim JH; Park H; Kim TG; Lee H; Jun S; Lee E; Jeon WS; Chung J; Jung IS
    Sci Rep; 2021 Oct; 11(1):19889. PubMed ID: 34615961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled Colloidal Quantum Dot Molecules.
    Koley S; Cui J; Panfil YE; Banin U
    Acc Chem Res; 2021 Mar; 54(5):1178-1188. PubMed ID: 33459013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.