BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28510362)

  • 41. Molecular Mechanisms of AhpC in Resistance to Oxidative Stress in
    Zhang B; Gu H; Yang Y; Bai H; Zhao C; Si M; Su T; Shen X
    Front Microbiol; 2019; 10():1483. PubMed ID: 31338075
    [No Abstract]   [Full Text] [Related]  

  • 42. Rapid identification of Burkholderia pseudomallei and Burkholderia mallei by fluorescence in situ hybridization (FISH) from culture and paraffin-embedded tissue samples.
    Hagen RM; Frickmann H; Elschner M; Melzer F; Neubauer H; Gauthier YP; Racz P; Poppert S
    Int J Med Microbiol; 2011 Nov; 301(7):585-90. PubMed ID: 21658996
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized
    Micheva-Viteva SN; Shou Y; Ganguly K; Wu TH; Hong-Geller E
    Front Cell Infect Microbiol; 2017; 7():231. PubMed ID: 28638804
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a versatile procedure based on natural transformation for marker-free targeted genetic modification in Streptococcus thermophilus.
    Fontaine L; Dandoy D; Boutry C; Delplace B; de Frahan MH; Fremaux C; Horvath P; Boyaval P; Hols P
    Appl Environ Microbiol; 2010 Dec; 76(23):7870-7. PubMed ID: 20935129
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protective efficacy of heat-inactivated B. thailandensis, B. mallei or B. pseudomallei against experimental melioidosis and glanders.
    Sarkar-Tyson M; Smither SJ; Harding SV; Atkins TP; Titball RW
    Vaccine; 2009 Jul; 27(33):4447-51. PubMed ID: 19490962
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thiaminase I Provides a Growth Advantage by Salvaging Precursors from Environmental Thiamine and Its Analogs in Burkholderia thailandensis.
    Sannino DR; Kraft CE; Edwards KA; Angert ER
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30006396
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of genes required for soil survival in Burkholderia thailandensis by transposon-directed insertion site sequencing.
    Bishop AH; Rachwal PA
    Curr Microbiol; 2014 Jun; 68(6):693-701. PubMed ID: 24488501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Potential of recombinant flagellin fragment from Burkholderia thailandensis as an antigen for melioidosis antibody detection by indirect ELISA.
    Wajanarogana S; Nimnuch P; Thongmee A; Kritsiriwuthinan K
    Mol Cell Probes; 2013 Apr; 27(2):98-102. PubMed ID: 23159530
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of binge alcohol exposure on Burkholderia thailandensis-alveolar macrophage interaction.
    Jimenez V; Moreno R; Kaufman E; Hornstra H; Settles E; Currie BJ; Keim P; Monroy FP
    Alcohol; 2017 Nov; 64():55-63. PubMed ID: 28965656
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis.
    Yu Y; Kim HS; Chua HH; Lin CH; Sim SH; Lin D; Derr A; Engels R; DeShazer D; Birren B; Nierman WC; Tan P
    BMC Microbiol; 2006 May; 6():46. PubMed ID: 16725056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transgenic insertional mutagenesis. Applications to inner-ear genetics.
    Friedman RA
    Arch Otolaryngol Head Neck Surg; 1996 Mar; 122(3):252-7. PubMed ID: 8607951
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Burkholderia thailandensis Methylated Hydroxyalkylquinolines: Biosynthesis and Antimicrobial Activity in Cocultures.
    Klaus JR; Majerczyk C; Moon S; Eppler NA; Smith S; Tuma E; Groleau MC; Asfahl KL; Smalley NE; Hayden HS; Piochon M; Ball P; Dandekar AA; Gauthier C; Déziel E; Chandler JR
    Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33008823
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reporter-Guided Transposon Mutant Selection for Activation of Silent Gene Clusters in Burkholderia thailandensis.
    Mao D; Yoshimura A; Wang R; Seyedsayamdost MR
    Chembiochem; 2020 Jul; 21(13):1826-1831. PubMed ID: 31984619
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Revised genome sequence of Burkholderia thailandensis MSMB43 with improved annotation.
    Zhuo Y; Liu L; Wang Q; Liu X; Ren B; Liu M; Ni P; Cheng YQ; Zhang L
    J Bacteriol; 2012 Sep; 194(17):4749-50. PubMed ID: 22887659
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Piperacillin triggers virulence factor biosynthesis via the oxidative stress response in
    Li A; Okada BK; Rosen PC; Seyedsayamdost MR
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34172579
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gene trapping: a multi-purpose tool for functional genomics.
    Gentile A; D'Alessandro L; Medico E
    Biotechnol Genet Eng Rev; 2003; 20():77-100. PubMed ID: 14997847
    [No Abstract]   [Full Text] [Related]  

  • 57. Scarless gene deletion using mazF as a new counter-selection marker and an improved deletion cassette assembly method in Saccharomyces cerevisiae.
    Liu Q; Liu H; Yang Y; Zhang X; Bai Y; Qiao M; Xu H
    J Gen Appl Microbiol; 2014; 60(2):89-93. PubMed ID: 24859867
    [No Abstract]   [Full Text] [Related]  

  • 58. Genetic approaches for changing the heart and dissecting complex syndromes.
    Moga MA; Nakamura T; Robbins J
    J Mol Cell Cardiol; 2008 Aug; 45(2):148-55. PubMed ID: 18601931
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cryo-electron tomography of stationary phase
    Khanna K; Welch MD
    MicroPubl Biol; 2024; 2024():. PubMed ID: 38725941
    [No Abstract]   [Full Text] [Related]  

  • 60. Distribution, characterization, and evolution of heavy metal resistance genes and Tn7-like associated heavy metal resistance Gene Island of
    Lan Y; Liu M; Song Y; Cao Y; Li F; Luo D; Qiao D
    Front Microbiol; 2023; 14():1252127. PubMed ID: 38075907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.