These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28510657)

  • 1. Heteroblasty in epiphytic bromeliads: functional implications for species in understorey and exposed growing sites.
    Beyschlag J; Zotz G
    Ann Bot; 2017 Nov; 120(5):681-692. PubMed ID: 28510657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of leaf ontogeny on drought-induced gradients of CAM expression and ABA levels in rosettes of the epiphytic tank bromeliad Guzmania monostachia.
    Rodrigues MA; Hamachi L; Mioto PT; Purgatto E; Mercier H
    Plant Physiol Biochem; 2016 Nov; 108():400-411. PubMed ID: 27552178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage.
    Freschi L; Takahashi CA; Cambui CA; Semprebom TR; Cruz AB; Mioto PT; de Melo Versieux L; Calvente A; Latansio-Aidar SR; Aidar MP; Mercier H
    J Plant Physiol; 2010 May; 167(7):526-33. PubMed ID: 19954859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontogeny, understorey light interception and simulated carbon gain of juvenile rainforest evergreens differing in shade tolerance.
    Lusk CH; Pérez-Millaqueo MM; Piper FI; Saldaña A
    Ann Bot; 2011 Sep; 108(3):419-28. PubMed ID: 21856637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological variation of Aechmea distichantha (Bromeliaceae) in a Chaco forest: habitat and size-related effects.
    Cavallero L; López D; Barberis IM
    Plant Biol (Stuttg); 2009 May; 11(3):379-91. PubMed ID: 19470109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation study on the importance of size-related changes in leaf morphology and physiology for carbon gain in an epiphytic bromeliad.
    Zotz G; Reichling P; Valladares F
    Ann Bot; 2002 Oct; 90(4):437-43. PubMed ID: 12324266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tale of two plasticities: leaf hydraulic conductances and related traits diverge for two tropical epiphytes from contrasting light environments.
    North GB; Browne MG; Fukui K; Maharaj FD; Phillips CA; Woodside WT
    Plant Cell Environ; 2016 Jul; 39(7):1408-19. PubMed ID: 26679206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heteroblasty in bromeliads - anatomical, morphological and physiological changes in ontogeny are not related to the change from atmospheric to tank form.
    Meisner K; Winkler U; Zotz G
    Funct Plant Biol; 2013 Apr; 40(3):251-262. PubMed ID: 32481105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade?
    Valladares F; Gianoli E; Saldaña A
    Ann Bot; 2011 Aug; 108(2):231-9. PubMed ID: 21685433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf display and photosynthesis of tree seedlings in a cool-temperate deciduous broadleaf forest understorey.
    Muraoka H; Koizumi H; Pearcy RW
    Oecologia; 2003 May; 135(4):500-9. PubMed ID: 16228248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large leaves in warm, moist environments confer an advantage in seedling light interception efficiency.
    Lusk CH; Grierson ERP; Laughlin DC
    New Phytol; 2019 Aug; 223(3):1319-1327. PubMed ID: 30985943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Newly found leaf arrangement to reduce self-shading within a crown in Japanese monoaxial tree species.
    Aoyagi H; Nakabayashi M; Yamada T
    J Plant Res; 2024 Mar; 137(2):203-213. PubMed ID: 38281225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid waters in tank bromeliads: Causes and potential consequences.
    North GB; Brinton EK; Kho TL; Fukui K; Maharaj FDR; Fung A; Ranganath M; Shiina JH
    Am J Bot; 2023 Jan; 110(1):e16104. PubMed ID: 36571428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Economic and hydraulic divergences underpin ecological differentiation in the Bromeliaceae.
    Males J; Griffiths H
    Plant Cell Environ; 2018 Jan; 41(1):64-78. PubMed ID: 28346742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of aquaporins on nitrogen-acquisition strategies of juvenile and adult plants of an epiphytic tank-forming bromeliad.
    Matiz A; Cambuí CA; Richet N; Mioto PT; Gomes F; Pikart FC; Chaumont F; Gaspar M; Mercier H
    Planta; 2019 Jul; 250(1):319-332. PubMed ID: 31030328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity of phenotype and heteroblasty in contrasting populations of Acacia koa.
    Rose KME; Mickelbart MV; Jacobs DF
    Ann Bot; 2019 Oct; 124(3):399-409. PubMed ID: 31222279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Becoming less tolerant with age: sugar maple, shade, and ontogeny.
    Sendall KM; Lusk CH; Reich PB
    Oecologia; 2015 Dec; 179(4):1011-21. PubMed ID: 26318296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf trait variation during ontogeny in the endangered Brazilian rosewood tree.
    Souza ML; Garcia LE; Lovato MB; Lemos-Filho JP
    Plant Biol (Stuttg); 2021 Nov; 23(6):1109-1117. PubMed ID: 34532953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal allocation of resources in response to shading and neighbours in the heteroblastic species, Acacia implexa.
    Forster MA; Ladd B; Bonser SP
    Ann Bot; 2011 Feb; 107(2):219-28. PubMed ID: 21135029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf life span spectrum of tropical woody seedlings: effects of light and ontogeny and consequences for survival.
    Kitajima K; Cordero RA; Wright SJ
    Ann Bot; 2013 Aug; 112(4):685-99. PubMed ID: 23532047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.