These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 28511082)

  • 21. Digital Image Correlation and Ultrasonic Lamb Waves for the Detection and Prediction of Crack-Type Damage in Fiber-Reinforced Polymer Composite Laminates.
    Jasiūnienė E; Vaitkūnas T; Šeštokė J; Griškevičius P
    Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates.
    Hosoi A; Kawada H
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29996529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Adhesive Bond-Slip Behavior on the Capacity of Innovative FRP Retrofits for Fatigue and Fracture Repair of Hydraulic Steel Structures.
    Lozano CM; Riveros GA
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31071962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor.
    Liu Z; Chen K; Li Z; Jiang X
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29053614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Research on Delamination Damage Quantification Detection of CFRP Bending Plate Based on Lamb Wave Mode Control.
    Yu Q; Zhou S; Cheng Y; Deng Y
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatigue Crack Monitoring Method Based on the Lamb Wave Damage Index.
    He M; Dong C; Sun X; He J
    Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Retrofit Theory to Prevent Fatigue Crack Initiation in Aging Riveted Bridges Using Carbon Fiber-Reinforced Polymer Materials.
    Ghafoori E; Motavalli M
    Polymers (Basel); 2016 Aug; 8(8):. PubMed ID: 30974583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of the Dissipative Heat Sources Related to the Total Energy Input of a CFRP Composite by Using the Second Amplitude Harmonic of the Thermal Signal.
    De Finis R; Palumbo D
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32585872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advanced numerical simulations considering crack orientation for fatigue damage quantification using nonlinear guided waves.
    Lee YF; Lu Y
    Ultrasonics; 2022 Aug; 124():106738. PubMed ID: 35358841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical and Numerical Study on Stress Intensity Factors for FRP-Strengthened Steel Plates with Double-Edged Cracks.
    Wang HT; Wu G; Pang YY
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30036978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crack Detection of FRP-Reinforced Concrete Beam Using Embedded Piezoceramic Smart Aggregates.
    Jiang T; Hong Y; Zheng J; Wang L; Gu H
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analytical and numerical modeling of nonlinear lamb wave interaction with a breathing crack with low-frequency modulation.
    Yuan P; Xu X; Glorieux C; Jia K; Chen J; Chen X; Yin A
    Ultrasonics; 2024 May; 140():107306. PubMed ID: 38579487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Fatigue Model to Predict Interlaminar Damage of FRP Composite Laminates Subjected to Mode I Load.
    Khan SA; Rahimian Koloor SS; King Jye W; Siebert G; Tamin MN
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fatigue Analysis of CFRP-Reinforced Concrete Ribbed Girder Bridge Deck Slabs.
    Tian S; Zhang X; Hu W
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation.
    Hong M; Su Z; Wang Q; Cheng L; Qing X
    Ultrasonics; 2014 Mar; 54(3):770-8. PubMed ID: 24156928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of surface properties of a solid plate using nonlinear Lamb wave approach.
    Deng M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1157-62. PubMed ID: 16797666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface-bonded and embedded optical fibers as ultrasonic sensors.
    Pierce SG; Philp WR; Gachagan A; McNab A; Hayward G; Culshaw B
    Appl Opt; 1996 Sep; 35(25):5191-7. PubMed ID: 21102956
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of temperature variations on ultrasonic guided waves in anisotropic CFRP plates.
    Putkis O; Dalton RP; Croxford AJ
    Ultrasonics; 2015 Jul; 60():109-16. PubMed ID: 25812468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combination of Phase Matching and Phase-Reversal Approaches for Thermal Damage Assessment by Second Harmonic Lamb Waves.
    Li W; Hu S; Deng M
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30322066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach.
    Shen Y; Cesnik CE
    Ultrasonics; 2017 Feb; 74():106-123. PubMed ID: 27770666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.