These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2851135)

  • 1. [P-chiral phosphates--the tools for studying the stereochemistry of enzymatic reactions of the transfer of phosphate or nucleotidyl groups].
    Niewiarowski W
    Postepy Biochem; 1988; 34(1-2):81-114. PubMed ID: 2851135
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphate starvation-inducible gene ushA encodes a 5' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source.
    Rittmann D; Sorger-Herrmann U; Wendisch VF
    Appl Environ Microbiol; 2005 Aug; 71(8):4339-44. PubMed ID: 16085822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The bioremediator glycerophosphodiesterase employs a non-processive mechanism for hydrolysis.
    Hadler KS; Gahan LR; Ollis DL; Schenk G
    J Inorg Biochem; 2010 Feb; 104(2):211-3. PubMed ID: 19923005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotidase and DNase activities in Brazilian snake venoms.
    Sales PB; Santoro ML
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jan; 147(1):85-95. PubMed ID: 17904425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic hydrolysis of bis-(4-nitrophenyl)phosphate and bis-(4-cyanophenyl)phosphate by rat tissues.
    Brandt E; Heymann E
    Biochem Pharmacol; 1978 Mar; 27(5):773-7. PubMed ID: 26349
    [No Abstract]   [Full Text] [Related]  

  • 6. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution.
    Zalatan JG; Fenn TD; Brunger AT; Herschlag D
    Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis, kinetic, and spectroscopic studies of the P-loop residues in a low molecular weight protein tyrosine phosphatase.
    Evans B; Tishmack PA; Pokalsky C; Zhang M; Van Etten RL
    Biochemistry; 1996 Oct; 35(42):13609-17. PubMed ID: 8885840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diadenosine phosphates and the physiological control of blood pressure.
    Schlüter H; Offers E; Brüggemann G; van der Giet M; Tepel M; Nordhoff E; Karas M; Spieker C; Witzel H; Zidek W
    Nature; 1994 Jan; 367(6459):186-8. PubMed ID: 8114917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity and stereospecificity of calf spleen phosphodiesterase towards deoxyribonucleosidyl 3'-(4-nitrophenyl phosphates) and phosphorothioates.
    Niewiarowski W; Uznanski B
    Eur J Biochem; 1985 Nov; 153(1):145-53. PubMed ID: 2998790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural localization of 5'-nucleotidase in guinea pig neutrophils based upon the use of cerium as capturing agent.
    Robinson JM; Karnovsky MJ
    J Histochem Cytochem; 1983 Oct; 31(10):1190-6. PubMed ID: 6309948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-catalyzed phosphoryl transfer reactions.
    Knowles JR
    Annu Rev Biochem; 1980; 49():877-919. PubMed ID: 6250450
    [No Abstract]   [Full Text] [Related]  

  • 12. Purification and properties of a phosphohydrolase from Enterobacter aerogenes.
    Gerlt JA; Whitman GJ
    J Biol Chem; 1975 Jul; 250(13):5053-8. PubMed ID: 168197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delineation of membrane-bound phosphatase activities in normal and leukemic thymocytes.
    Casteel NL; Menahan LA; Kemp RG
    Biochim Biophys Acta; 1983 Apr; 756(3):385-94. PubMed ID: 6299380
    [No Abstract]   [Full Text] [Related]  

  • 14. Localization of neutral magnesium-stimulated sphingomyelinase in plasma membrane of cultured neuroblastoma cells.
    Spence MW; Wakkary J; Clarke JT; Cook HW
    Biochim Biophys Acta; 1982 Oct; 719(1):162-4. PubMed ID: 6293585
    [No Abstract]   [Full Text] [Related]  

  • 15. [Early changes in retinal 5'-nucleotidase activity in hereditary retinal degeneration].
    Chusova GG; Ostapenko IA; Etingof RN
    Biull Eksp Biol Med; 1981 Sep; 92(9):305-7. PubMed ID: 6271302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrophage activation measured by changes in 5'-nucleotidase and alkaline phosphodiesterase I activities after infection of newborn and juvenile guinea pigs with mycobacterium microti.
    Bautista AP; Solomon JB
    J Leukoc Biol; 1984 Apr; 35(4):415-26. PubMed ID: 6323604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When structural and electronic analogy leads to reactivity: the unprecedented phosphodiesterase activity of vanadates.
    Steens N; Ramadan AM; Parac-Vogt TN
    Chem Commun (Camb); 2009 Feb; (8):965-7. PubMed ID: 19214331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and biological evaluation of 9-[5'-(2-oxo-1,3,2-oxazaphosphorinan-2-yl)-beta-D-arabinosyl]ade nine and 9-[5'-(2-oxo-1,3,2-dioxaphosphorinan-2-yl)-beta-D-arabinosyl]ade nine: potential neutral precursors of 9-[beta-D-arabinofuranosyl]adenine 5'-monophosphate.
    Farquhar D; Smith R
    J Med Chem; 1985 Sep; 28(9):1358-61. PubMed ID: 2411927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of sulfate and phosphate by H/D exchange mass spectrometry: application to isoflavone.
    Kanakubo A; Isobe M
    J Mass Spectrom; 2004 Nov; 39(11):1260-7. PubMed ID: 15472986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The salivary 5'-nucleotidase/phosphodiesterase of the hematophagus sand fly, Lutzomyia longipalpis [corrected].
    Ribeiro JM; Rowton ED; Charlab R
    Insect Biochem Mol Biol; 2000 Apr; 30(4):279-85. PubMed ID: 10727894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.