These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 28511645)

  • 61. SS18-SSX fusion protein-induced Wnt/β-catenin signaling is a therapeutic target in synovial sarcoma.
    Trautmann M; Sievers E; Aretz S; Kindler D; Michels S; Friedrichs N; Renner M; Kirfel J; Steiner S; Huss S; Koch A; Penzel R; Larsson O; Kawai A; Tanaka S; Sonobe H; Waha A; Schirmacher P; Mechtersheimer G; Wardelmann E; Büttner R; Hartmann W
    Oncogene; 2014 Oct; 33(42):5006-16. PubMed ID: 24166495
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Efficacy and safety of TAS-115, a novel oral multi-kinase inhibitor, in osteosarcoma: an expansion cohort of a phase I study.
    Kawai A; Naka N; Shimomura A; Takahashi S; Kitano S; Imura Y; Yonemori K; Nakatani F; Iwata S; Kobayashi E; Outani H; Tamiya H; Naito Y; Yamamoto N; Doi T
    Invest New Drugs; 2021 Dec; 39(6):1559-1567. PubMed ID: 34117970
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Response to pazopanib in two pediatric patients with pretreated relapsing synovial sarcoma.
    Casanova M; Basso E; Magni C; Bergamaschi L; Chiaravalli S; Carta R; Tirtei E; Massimino M; Fagioli F; Ferrari A
    Tumori; 2017 Jan; 103(1):e1-e3. PubMed ID: 27647230
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Preclinical evaluation of dasatinib alone and in combination with cabozantinib for the treatment of diffuse intrinsic pontine glioma.
    Truffaux N; Philippe C; Paulsson J; Andreiuolo F; Guerrini-Rousseau L; Cornilleau G; Le Dret L; Richon C; Lacroix L; Puget S; Geoerger B; Vassal G; Östman A; Grill J
    Neuro Oncol; 2015 Jul; 17(7):953-64. PubMed ID: 25534822
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pazopanib regresses a doxorubicin-resistant synovial sarcoma in a patient-derived orthotopic xenograft mouse model.
    Igarashi K; Kawaguchi K; Kiyuna T; Miyake K; Miyake M; Nelson SD; Russell TA; Dry SM; Li Y; Yamamoto N; Hayashi K; Kimura H; Miwa S; Higuchi T; Singh SR; Tsuchiya H; Hoffman RM
    Tissue Cell; 2019 Jun; 58():107-111. PubMed ID: 31133237
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dual Targeting of PDGFRα and FGFR1 Displays Synergistic Efficacy in Malignant Rhabdoid Tumors.
    Wong JP; Todd JR; Finetti MA; McCarthy F; Broncel M; Vyse S; Luczynski MT; Crosier S; Ryall KA; Holmes K; Payne LS; Daley F; Wai P; Jenks A; Tanos B; Tan AC; Natrajan RC; Williamson D; Huang PH
    Cell Rep; 2016 Oct; 17(5):1265-1275. PubMed ID: 27783942
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In Vitro and In Vivo Activity of AMG 337, a Potent and Selective MET Kinase Inhibitor, in MET-Dependent Cancer Models.
    Hughes PE; Rex K; Caenepeel S; Yang Y; Zhang Y; Broome MA; Kha HT; Burgess TL; Amore B; Kaplan-Lefko PJ; Moriguchi J; Werner J; Damore MA; Baker D; Choquette DM; Harmange JC; Radinsky R; Kendall R; Dussault I; Coxon A
    Mol Cancer Ther; 2016 Jul; 15(7):1568-79. PubMed ID: 27196782
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Establishment of patient-derived gastric cancer xenografts: a useful tool for preclinical evaluation of targeted therapies involving alterations in HER-2, MET and FGFR2 signaling pathways.
    Wang H; Lu J; Tang J; Chen S; He K; Jiang X; Jiang W; Teng L
    BMC Cancer; 2017 Mar; 17(1):191. PubMed ID: 28292264
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A highly potent and specific MET therapeutic protein antagonist with both ligand-dependent and ligand-independent activity.
    Olwill SA; Joffroy C; Gille H; Vigna E; Matschiner G; Allersdorfer A; Lunde BM; Jaworski J; Burrows JF; Chiriaco C; Christian HJ; Hülsmeyer M; Trentmann S; Jensen K; Hohlbaum AM; Audoly L
    Mol Cancer Ther; 2013 Nov; 12(11):2459-71. PubMed ID: 24002935
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Antitumour activity of oral E7080, a novel inhibitor of multiple tyrosine kinases, in human sarcoma xenografts.
    Bruheim S; Kristian A; Uenaka T; Suo Z; Tsuruoka A; Nesland JM; Fodstad Ø
    Int J Cancer; 2011 Aug; 129(3):742-50. PubMed ID: 21225632
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Olaratumab Exerts Antitumor Activity in Preclinical Models of Pediatric Bone and Soft Tissue Tumors through Inhibition of Platelet-Derived Growth Factor Receptor α.
    Lowery CD; Blosser W; Dowless M; Knoche S; Stephens J; Li H; Surguladze D; Loizos N; Luffer-Atlas D; Oakley GJ; Guo Q; Iyer S; Rubin BP; Stancato L
    Clin Cancer Res; 2018 Feb; 24(4):847-857. PubMed ID: 29191969
    [No Abstract]   [Full Text] [Related]  

  • 72. Initial testing of the multitargeted kinase inhibitor pazopanib by the Pediatric Preclinical Testing Program.
    Keir ST; Morton CL; Wu J; Kurmasheva RT; Houghton PJ; Smith MA
    Pediatr Blood Cancer; 2012 Sep; 59(3):586-8. PubMed ID: 22190407
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Activity of 2,6,9-trisubstituted purines as potent PDGFRα kinase inhibitors with antileukaemic activity.
    Řezníčková E; Gucký T; Kováčová V; Ajani H; Jorda R; Kryštof V
    Eur J Med Chem; 2019 Nov; 182():111663. PubMed ID: 31514019
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Targeting MET kinase with the small-molecule inhibitor amuvatinib induces cytotoxicity in primary myeloma cells and cell lines.
    Phillip CJ; Zaman S; Shentu S; Balakrishnan K; Zhang J; Baladandayuthapani V; Taverna P; Redkar S; Wang M; Stellrecht CM; Gandhi V
    J Hematol Oncol; 2013 Dec; 6():92. PubMed ID: 24326130
    [TBL] [Abstract][Full Text] [Related]  

  • 75. E7050: a dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models.
    Nakagawa T; Tohyama O; Yamaguchi A; Matsushima T; Takahashi K; Funasaka S; Shirotori S; Asada M; Obaishi H
    Cancer Sci; 2010 Jan; 101(1):210-5. PubMed ID: 19832844
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Imatinib mesylate inhibits androgen-independent PC-3 cell viability, proliferation, migration, and tumor growth by targeting platelet-derived growth factor receptor-α.
    Nayeem MJ; Yamamura A; Hayashi H; Muramatsu H; Nakamura K; Sassa N; Sato M
    Life Sci; 2022 Jan; 288():120171. PubMed ID: 34822800
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Coexpression of hepatocyte growth factor and c-Met proto-oncogene product in synovial sarcoma.
    Motoi T; Ishida T; Kuroda M; Horiuchi H; Oka T; Matsumoto K; Nakamura T; Machinami R
    Pathol Int; 1998 Oct; 48(10):769-75. PubMed ID: 9788260
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The novel ATP-competitive inhibitor of the MET hepatocyte growth factor receptor EMD1214063 displays inhibitory activity against selected MET-mutated variants.
    Medová M; Pochon B; Streit B; Blank-Liss W; Francica P; Stroka D; Keogh A; Aebersold DM; Blaukat A; Bladt F; Zimmer Y
    Mol Cancer Ther; 2013 Nov; 12(11):2415-24. PubMed ID: 24061647
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Platelet-derived growth factor receptor alpha (PDGFRα) targeting and relevant biomarkers in ovarian carcinoma.
    Matsuo K; Nishimura M; Komurov K; Shahzad MM; Ali-Fehmi R; Roh JW; Lu C; Cody DD; Ram PT; Loizos N; Coleman RL; Sood AK
    Gynecol Oncol; 2014 Jan; 132(1):166-75. PubMed ID: 24183729
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Identification of the receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor, as therapeutic targets in clear cell sarcoma.
    Davis IJ; McFadden AW; Zhang Y; Coxon A; Burgess TL; Wagner AJ; Fisher DE
    Cancer Res; 2010 Jan; 70(2):639-45. PubMed ID: 20068147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.