BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28511658)

  • 1. Global Kalman filter approaches to estimate absolute angles of lower limb segments.
    Nogueira SL; Lambrecht S; Inoue RS; Bortole M; Montagnoli AN; Moreno JC; Rocon E; Terra MH; Siqueira AAG; Pons JL
    Biomed Eng Online; 2017 May; 16(1):58. PubMed ID: 28511658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial Sensor Error Reduction through Calibration and Sensor Fusion.
    Lambrecht S; Nogueira SL; Bortole M; Siqueira AA; Terra MH; Rocon E; Pons JL
    Sensors (Basel); 2016 Feb; 16(2):235. PubMed ID: 26901198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Markov jump linear systems-based position estimation for lower limb exoskeletons.
    Nogueira SL; Siqueira AA; Inoue RS; Terra MH
    Sensors (Basel); 2014 Jan; 14(1):1835-49. PubMed ID: 24451469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmenting Kalman Filter Machine Learning Models with Data from OCT to Predict Future Visual Field Loss: An Analysis Using Data from the African Descent and Glaucoma Evaluation Study and the Diagnostic Innovation in Glaucoma Study.
    Zhalechian M; Van Oyen MP; Lavieri MS; De Moraes CG; Girkin CA; Fazio MA; Weinreb RN; Bowd C; Liebmann JM; Zangwill LM; Andrews CA; Stein JD
    Ophthalmol Sci; 2022 Mar; 2(1):100097. PubMed ID: 36246178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.
    Ligorio G; Sabatini AM
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):2033-43. PubMed ID: 25775483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots.
    Jung JY; Heo W; Yang H; Park H
    Sensors (Basel); 2015 Oct; 15(11):27738-59. PubMed ID: 26528986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A basic study on variable-gain Kalman filter based on angle error calculated from acceleration signals for lower limb angle measurement with inertial sensors.
    Teruyama Y; Watanabe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3423-6. PubMed ID: 24110464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Performance Comparison of Two Kalman Filters for Rate Signal Direct Modeling and Differencing Modeling for Combining a MEMS Gyroscope Array to Improve Accuracy.
    Yuan G; Yuan W; Xue L; Xie J; Chang H
    Sensors (Basel); 2015 Oct; 15(11):27590-610. PubMed ID: 26528980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial and time-of-arrival ranging sensor fusion.
    Vasilyev P; Pearson S; El-Gohary M; Aboy M; McNames J
    Gait Posture; 2017 May; 54():1-7. PubMed ID: 28242567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of variable-gain Kalman filter based on angle error calculated from acceleration signals in lower limb angle measurement with inertial sensors.
    Teruyama Y; Watanabe T
    Comput Math Methods Med; 2013; 2013():398042. PubMed ID: 24282442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.
    Mazumder O; Kundu AS; Lenka PK; Bhaumik S
    Gait Posture; 2016 Oct; 50():53-59. PubMed ID: 27585182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of an Inertial Sensor System for Physical Therapists to Quantify Movement Coordination During Functional Tasks.
    Tulipani L; Boocock MG; Lomond KV; El-Gohary M; Reid DA; Henry SM
    J Appl Biomech; 2018 Feb; 34(1):23-30. PubMed ID: 28787248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower Limb Kinematics Using Inertial Sensors during Locomotion: Accuracy and Reproducibility of Joint Angle Calculations with Different Sensor-to-Segment Calibrations.
    Lebleu J; Gosseye T; Detrembleur C; Mahaudens P; Cartiaux O; Penta M
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Quaternion-Based Kalman Filter for Human Body Motion Tracking Using the Second Estimator of the Optimal Quaternion Algorithm and the Joint Angle Constraint Method with Inertial and Magnetic Sensors.
    Duan Y; Zhang X; Li Z
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating Lower Limb Kinematics using Distance Measurements with a Reduced Wearable Inertial Sensor Count.
    Sy L; Lovell NH; Redmond SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4858-4862. PubMed ID: 33019078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Step Size and Lower Limb Segment Orientation from Multiple Low-Cost Wearable Inertial/Magnetic Sensors for Pedestrian Navigation.
    Tjhai C; O'Keefe K
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating Lower Extremity Running Gait Kinematics with a Single Accelerometer: A Deep Learning Approach.
    Gholami M; Napier C; Menon C
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32455927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Joint Angle Estimation with Inertial Sensors and Validation with A Robot Arm.
    El-Gohary M; McNames J
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1759-67. PubMed ID: 25700438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optimized Kalman filter for the estimate of trunk orientation from inertial sensors data during treadmill walking.
    MazzĂ  C; Donati M; McCamley J; Picerno P; Cappozzo A
    Gait Posture; 2012 Jan; 35(1):138-42. PubMed ID: 22047775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy.
    Lebel K; Boissy P; Nguyen H; Duval C
    Biomed Eng Online; 2017 May; 16(1):56. PubMed ID: 28506273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.