These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
990 related articles for article (PubMed ID: 28511789)
1. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. Sharma M; Gupta SK; Majumder B; Maurya VK; Deeba F; Alam A; Pandey V J Proteomics; 2017 Jun; 163():28-51. PubMed ID: 28511789 [TBL] [Abstract][Full Text] [Related]
2. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. Kang G; Li G; Xu W; Peng X; Han Q; Zhu Y; Guo T J Proteome Res; 2012 Dec; 11(12):6066-79. PubMed ID: 23101459 [TBL] [Abstract][Full Text] [Related]
3. Proteomics unravel the regulating role of salicylic acid in soybean under yield limiting drought stress. Sharma M; Gupta SK; Majumder B; Maurya VK; Deeba F; Alam A; Pandey V Plant Physiol Biochem; 2018 Sep; 130():529-541. PubMed ID: 30098585 [TBL] [Abstract][Full Text] [Related]
4. Role of exogenous-applied salicylic acid, zinc and glycine betaine to improve drought-tolerance in wheat during reproductive growth stages. Shemi R; Wang R; Gheith EMS; Hussain HA; Cholidah L; Zhang K; Zhang S; Wang L BMC Plant Biol; 2021 Dec; 21(1):574. PubMed ID: 34872519 [TBL] [Abstract][Full Text] [Related]
5. Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture. Ahmad A; Aslam Z; Naz M; Hussain S; Javed T; Aslam S; Raza A; Ali HM; Siddiqui MH; Salem MZM; Hano C; Shabbir R; Ahmar S; Saeed T; Jamal MA PLoS One; 2021; 16(12):e0260556. PubMed ID: 34928959 [TBL] [Abstract][Full Text] [Related]
6. Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum). Loutfy N; El-Tayeb MA; Hassanen AM; Moustafa MF; Sakuma Y; Inouhe M J Plant Res; 2012 Jan; 125(1):173-84. PubMed ID: 21445718 [TBL] [Abstract][Full Text] [Related]
7. Mitigating drought-induced oxidative stress in wheat (Triticum aestivum L.) through foliar application of sulfhydryl thiourea. Ishfaq N; Waraich EA; Ahmad M; Hussain S; Zulfiqar U; Din KU; Haider A; Yong JWH; Askri SMH; Ali HM Sci Rep; 2024 Jul; 14(1):15985. PubMed ID: 38987560 [TBL] [Abstract][Full Text] [Related]
8. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. Cheng L; Wang Y; He Q; Li H; Zhang X; Zhang F BMC Plant Biol; 2016 Aug; 16(1):188. PubMed ID: 27576435 [TBL] [Abstract][Full Text] [Related]
9. The role of salicylic acid in modulating phenotyping in spring wheat varieties for mitigating drought stress. Awadalla RA; Sallam A; Börner A; Elshamy MM; Heikal YM BMC Plant Biol; 2024 Oct; 24(1):948. PubMed ID: 39394092 [TBL] [Abstract][Full Text] [Related]
10. Identification of Two Novel Wheat Drought Tolerance-Related Proteins by Comparative Proteomic Analysis Combined with Virus-Induced Gene Silencing. Wang X; Xu Y; Li J; Ren Y; Wang Z; Xin Z; Lin T Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30545152 [TBL] [Abstract][Full Text] [Related]
11. EMS Derived Wheat Mutant BIG8-1 ( le Roux ML; Burger NFV; Vlok M; Kunert KJ; Cullis CA; Botha AM Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34070033 [TBL] [Abstract][Full Text] [Related]
12. Drought tolerance and proteomics studies of transgenic wheat containing the maize C Qin N; Xu W; Hu L; Li Y; Wang H; Qi X; Fang Y; Hua X Protoplasma; 2016 Nov; 253(6):1503-1512. PubMed ID: 26560113 [TBL] [Abstract][Full Text] [Related]
13. Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae. Bernardo L; Morcia C; Carletti P; Ghizzoni R; Badeck FW; Rizza F; Lucini L; Terzi V J Proteomics; 2017 Oct; 169():21-32. PubMed ID: 28366879 [TBL] [Abstract][Full Text] [Related]
14. Modifications of water status, growth rate and antioxidant system in two wheat cultivars as affected by salinity stress and salicylic acid. Loutfy N; Sakuma Y; Gupta DK; Inouhe M J Plant Res; 2020 Jul; 133(4):549-570. PubMed ID: 32323039 [TBL] [Abstract][Full Text] [Related]
15. Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. Faghani E; Gharechahi J; Komatsu S; Mirzaei M; Khavarinejad RA; Najafi F; Farsad LK; Salekdeh GH J Proteomics; 2015 Jan; 114():1-15. PubMed ID: 25449836 [TBL] [Abstract][Full Text] [Related]
16. Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett. Wang X; Vignjevic M; Jiang D; Jacobsen S; Wollenweber B J Exp Bot; 2014 Dec; 65(22):6441-56. PubMed ID: 25205581 [TBL] [Abstract][Full Text] [Related]
17. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum). Liu H; Sultan MA; Liu XL; Zhang J; Yu F; Zhao HX PLoS One; 2015; 10(4):e0121852. PubMed ID: 25859656 [TBL] [Abstract][Full Text] [Related]
18. Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.). Kang G; Li G; Zheng B; Han Q; Wang C; Zhu Y; Guo T Biochim Biophys Acta; 2012 Dec; 1824(12):1324-33. PubMed ID: 22868037 [TBL] [Abstract][Full Text] [Related]
19. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. Abid M; Tian Z; Ata-Ul-Karim ST; Liu Y; Cui Y; Zahoor R; Jiang D; Dai T Plant Physiol Biochem; 2016 Sep; 106():218-27. PubMed ID: 27179928 [TBL] [Abstract][Full Text] [Related]
20. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. Alvarez S; Roy Choudhury S; Pandey S J Proteome Res; 2014 Mar; 13(3):1688-701. PubMed ID: 24475748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]