BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 28511875)

  • 1. Visible light-switched cytosol release of siRNA by amphiphilic fullerene derivative to enhance RNAi efficacy in vitro and in vivo.
    Wang J; Xie L; Wang T; Wu F; Meng J; Liu J; Xu H
    Acta Biomater; 2017 Sep; 59():158-169. PubMed ID: 28511875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ROS-Sensitive Cross-Linked Polyethylenimine for Red-Light-Activated siRNA Therapy.
    Wang J; He X; Shen S; Cao Z; Yang X
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1855-1863. PubMed ID: 30582800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoinduced RNA interference.
    Matsushita-Ishiodori Y; Ohtsuki T
    Acc Chem Res; 2012 Jul; 45(7):1039-47. PubMed ID: 22360585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic comparison of lipopolymers for siRNA delivery to multiple breast cancer cell lines: In vitro studies.
    Aliabadi HM; Bahadur K C R; Bousoik E; Hall R; Barbarino A; Thapa B; Coyle M; Mahdipoor P; Uludağ H
    Acta Biomater; 2020 Jan; 102():351-366. PubMed ID: 31760224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and evaluation of new pH-sensitive amphiphilic cationic lipids for siRNA delivery.
    Malamas AS; Gujrati M; Kummitha CM; Xu R; Lu ZR
    J Control Release; 2013 Nov; 171(3):296-307. PubMed ID: 23796431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dextran-Conjugated Caged siRNA Nanoparticles for Photochemical Regulation of RNAi-Induced Gene Silencing in Cells and Mice.
    Chen C; Wang Z; Zhang J; Fan X; Xu L; Tang X
    Bioconjug Chem; 2019 May; 30(5):1459-1465. PubMed ID: 30987419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained delivery of siRNA/mesoporous silica nanoparticle complexes from nanofiber scaffolds for long-term gene silencing.
    Pinese C; Lin J; Milbreta U; Li M; Wang Y; Leong KW; Chew SY
    Acta Biomater; 2018 Aug; 76():164-177. PubMed ID: 29890267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery.
    Chen G; Wang Y; Xie R; Gong S
    J Control Release; 2017 Aug; 259():105-114. PubMed ID: 28159516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CXCR4-targeted modular peptide carriers for efficient anti-VEGF siRNA delivery.
    Egorova A; Shubina A; Sokolov D; Selkov S; Baranov V; Kiselev A
    Int J Pharm; 2016 Dec; 515(1-2):431-440. PubMed ID: 27789364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical Assembly of siRNA with Tetraamino Fullerene in Physiological Conditions for Efficient Internalization into Cells and Knockdown.
    Minami K; Okamoto K; Harano K; Noiri E; Nakamura E
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19347-19354. PubMed ID: 29742343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic Attractive Self-Delivery of siRNA and Light-Induced Self-Escape for Synergistic Gene Therapy.
    Yang Y; Ning H; Xia T; Du J; Sun W; Fan J; Peng X
    Adv Mater; 2023 Jul; 35(30):e2301409. PubMed ID: 37084041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy.
    Shi J; Liu Y; Wang L; Gao J; Zhang J; Yu X; Ma R; Liu R; Zhang Z
    Acta Biomater; 2014 Mar; 10(3):1280-91. PubMed ID: 24211343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis.
    Ding Y; Wang Y; Zhou J; Gu X; Wang W; Liu C; Bao X; Wang C; Li Y; Zhang Q
    Biomaterials; 2014 Aug; 35(25):7214-27. PubMed ID: 24875759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A silencing-mediated enhancement of osteogenic differentiation by supramolecular ternary siRNA polyplexes comprising biocleavable cationic polyrotaxanes and anionic fusogenic peptides.
    Inada T; Tamura A; Terauchi M; Yamaguchi S; Yui N
    Biomater Sci; 2018 Jan; 6(2):440-450. PubMed ID: 29355872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel polymerizable surfactants with pH-sensitive amphiphilicity and cell membrane disruption for efficient siRNA delivery.
    Wang XL; Ramusovic S; Nguyen T; Lu ZR
    Bioconjug Chem; 2007; 18(6):2169-77. PubMed ID: 17939730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small-interfering RNA (siRNA)-based functional micro- and nanostructures for efficient and selective gene silencing.
    Lee SH; Chung BH; Park TG; Nam YS; Mok H
    Acc Chem Res; 2012 Jul; 45(7):1014-25. PubMed ID: 22413937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia-reinforced antitumor RNA interference mediated by micelleplexes with programmed disintegration.
    Li X; Xu X; Huang K; Wu Y; Lin Z; Yin L
    Acta Biomater; 2022 Aug; 148():194-205. PubMed ID: 35662669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pH-Triggered Triblock Nanocarrier Enabled Highly Efficient siRNA Delivery for Cancer Therapy.
    Du L; Zhou J; Meng L; Wang X; Wang C; Huang Y; Zheng S; Deng L; Cao H; Liang Z; Dong A; Cheng Q
    Theranostics; 2017; 7(14):3432-3445. PubMed ID: 28912886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-mediated siRNA delivery.
    Wang XL; Xu R; Lu ZR
    J Control Release; 2009 Mar; 134(3):207-13. PubMed ID: 19135104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged gene silencing by combining siRNA nanogels and photochemical internalization.
    Raemdonck K; Naeye B; Høgset A; Demeester J; De Smedt SC
    J Control Release; 2010 Aug; 145(3):281-8. PubMed ID: 20403396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.