These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28512142)

  • 1. A well-known potassium channel plays a critical role in lysosomes.
    Zhu MX
    J Cell Biol; 2017 Jun; 216(6):1513-1515. PubMed ID: 28512142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-activated potassium conductances in retinal ganglion cells of the ferret.
    Wang GY; Robinson DW; Chalupa LM
    J Neurophysiol; 1998 Jan; 79(1):151-8. PubMed ID: 9425186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purinergic activation of BK channels in clonal kidney cells (Vero cells).
    Hafting T; Sand O
    Acta Physiol Scand; 2000 Oct; 170(2):99-109. PubMed ID: 11114947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function.
    Edgerton JR; Reinhart PH
    J Physiol; 2003 Apr; 548(Pt 1):53-69. PubMed ID: 12576503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two types of K(+) channels are present in the apical membrane of the thick ascending limb of the mouse kidney.
    Lu M; Wang W
    Kidney Blood Press Res; 2000; 23(2):75-82. PubMed ID: 10765108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast BK-type channel mediates the Ca(2+)-activated K(+) current in crayfish muscle.
    Araque A; Buño W
    J Neurophysiol; 1999 Oct; 82(4):1655-61. PubMed ID: 10515956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immortalized GnRH neurons express large-conductance calcium-activated potassium channels.
    Spergel DJ; Catt KJ; Rojas E
    Neuroendocrinology; 1996 Feb; 63(2):101-11. PubMed ID: 9053774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protons inhibit the BK(Ca) channel of rat small artery smooth muscle cells.
    Schubert R; Krien U; Gagov H
    J Vasc Res; 2001; 38(1):30-8. PubMed ID: 11173992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human podocytes possess a stretch-sensitive, Ca2+-activated K+ channel: potential implications for the control of glomerular filtration.
    Morton MJ; Hutchinson K; Mathieson PW; Witherden IR; Saleem MA; Hunter M
    J Am Soc Nephrol; 2004 Dec; 15(12):2981-7. PubMed ID: 15579500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion conductance of the Ca(2+)-activated maxi-K+ channel from the embryonic rat brain.
    Mienville JM; Clay JR
    Biophys J; 1997 Jan; 72(1):188-92. PubMed ID: 8994603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-dependent antagonist/agonist actions of taurine on Ca(2+)-activated potassium channels of rat skeletal muscle fibers.
    Tricarico D; Barbieri M; Conte Camerino D
    J Pharmacol Exp Ther; 2001 Sep; 298(3):1167-71. PubMed ID: 11504816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulatory regulation of the large-conductance, calcium-activated potassium channel by G proteins in bovine adrenal chromaffin cells.
    Walsh KB; Wilson SP; Long KJ; Lemon SC
    Mol Pharmacol; 1996 Feb; 49(2):379-86. PubMed ID: 8632773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ characterization of the Ca2+ sensitivity of large conductance Ca2+-activated K+ channels: implications for their use as near-membrane Ca2+ indicators in smooth muscle cells.
    Muñoz A; García L; Guerrero-Hernández A
    Biophys J; 1998 Oct; 75(4):1774-82. PubMed ID: 9746519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of maxi-K-channels in bovine trabecular meshwork and their activation by cyclic guanosine monophosphate.
    Stumpff F; Strauss O; Boxberger M; Wiederholt M
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1883-92. PubMed ID: 9286279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantable sites confer calcium sensitivity to BK channels.
    Schreiber M; Yuan A; Salkoff L
    Nat Neurosci; 1999 May; 2(5):416-21. PubMed ID: 10321244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-activated K+ channels in murine endothelial cells: block by intracellular calcium and magnesium.
    Ledoux J; Bonev AD; Nelson MT
    J Gen Physiol; 2008 Feb; 131(2):125-35. PubMed ID: 18195387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of calcium gating in small-conductance calcium-activated potassium channels.
    Xia XM; Fakler B; Rivard A; Wayman G; Johnson-Pais T; Keen JE; Ishii T; Hirschberg B; Bond CT; Lutsenko S; Maylie J; Adelman JP
    Nature; 1998 Oct; 395(6701):503-7. PubMed ID: 9774106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of ionic currents in human mesenchymal stem cells from bone marrow.
    Li GR; Sun H; Deng X; Lau CP
    Stem Cells; 2005 Mar; 23(3):371-82. PubMed ID: 15749932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion channel diversity in the feline smooth muscle esophagus.
    Salapatek AM; Ji J; Diamant NE
    Am J Physiol Gastrointest Liver Physiol; 2002 Feb; 282(2):G288-99. PubMed ID: 11804850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.