BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

753 related articles for article (PubMed ID: 28512683)

  • 21. CaSPA2 is important for polarity establishment and maintenance in Candida albicans.
    Zheng XD; Wang YM; Wang Y
    Mol Microbiol; 2003 Sep; 49(5):1391-405. PubMed ID: 12940995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans.
    Chang P; Fan X; Chen J
    Fungal Genet Biol; 2015 Aug; 81():132-41. PubMed ID: 25656079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudohyphal regulation by the transcription factor Rfg1p in Candida albicans.
    Cleary IA; Mulabagal P; Reinhard SM; Yadev NP; Murdoch C; Thornhill MH; Lazzell AL; Monteagudo C; Thomas DP; Saville SP
    Eukaryot Cell; 2010 Sep; 9(9):1363-73. PubMed ID: 20656914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The GRF10 homeobox gene regulates filamentous growth in the human fungal pathogen Candida albicans.
    Ghosh AK; Wangsanut T; Fonzi WA; Rolfes RJ
    FEMS Yeast Res; 2015 Dec; 15(8):. PubMed ID: 26472755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence.
    Du H; Guan G; Xie J; Sun Y; Tong Y; Zhang L; Huang G
    PLoS One; 2012; 7(1):e29707. PubMed ID: 22276126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans.
    Hube B
    Curr Opin Microbiol; 2004 Aug; 7(4):336-41. PubMed ID: 15288621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Candida albicans phosphatase Inp51p interacts with the EH domain protein Irs4p, regulates phosphatidylinositol-4,5-bisphosphate levels and influences hyphal formation, the cell integrity pathway and virulence.
    Badrane H; Nguyen MH; Cheng S; Kumar V; Derendorf H; Iczkowski KA; Clancy CJ
    Microbiology (Reading); 2008 Nov; 154(Pt 11):3296-3308. PubMed ID: 18957583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans.
    Bahn YS; Sundstrom P
    J Bacteriol; 2001 May; 183(10):3211-23. PubMed ID: 11325951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model.
    Pukkila-Worley R; Peleg AY; Tampakakis E; Mylonakis E
    Eukaryot Cell; 2009 Nov; 8(11):1750-8. PubMed ID: 19666778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The regulation of hyphae growth in
    Chen H; Zhou X; Ren B; Cheng L
    Virulence; 2020 Dec; 11(1):337-348. PubMed ID: 32274962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accumulation of P-bodies in Candida albicans under different stress and filamentous growth conditions.
    Jung JH; Kim J
    Fungal Genet Biol; 2011 Dec; 48(12):1116-23. PubMed ID: 22056521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A screen in Saccharomyces cerevisiae identified CaMCM1, an essential gene in Candida albicans crucial for morphogenesis.
    Rottmann M; Dieter S; Brunner H; Rupp S
    Mol Microbiol; 2003 Feb; 47(4):943-59. PubMed ID: 12581351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Candida albicans Sfl1/Sfl2 regulatory network drives the formation of pathogenic microcolonies.
    McCall AD; Kumar R; Edgerton M
    PLoS Pathog; 2018 Sep; 14(9):e1007316. PubMed ID: 30252918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Candida albicans requires iron to sustain hyphal growth.
    Luo G; Wang T; Zhang J; Zhang P; Lu Y
    Biochem Biophys Res Commun; 2021 Jul; 561():106-112. PubMed ID: 34022710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct roles of Candida albicans-specific genes in host-pathogen interactions.
    Wilson D; Mayer FL; Miramón P; Citiulo F; Slesiona S; Jacobsen ID; Hube B
    Eukaryot Cell; 2014 Aug; 13(8):977-89. PubMed ID: 24610660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans.
    Liu X; Nie X; Ding Y; Chen J
    Acta Biochim Biophys Sin (Shanghai); 2010 Nov; 42(11):793-800. PubMed ID: 20929924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ecm7, a regulator of HACS, functions in calcium homeostasis maintenance, oxidative stress response and hyphal development in Candida albicans.
    Ding X; Yu Q; Xu N; Wang Y; Cheng X; Qian K; Zhao Q; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2013 Aug; 57():23-32. PubMed ID: 23769872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis--similar inputs, different outputs.
    Sánchez-Martínez C; Pérez-Martín J
    Curr Opin Microbiol; 2001 Apr; 4(2):214-21. PubMed ID: 11282479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aft2, a novel transcription regulator, is required for iron metabolism, oxidative stress, surface adhesion and hyphal development in Candida albicans.
    Xu N; Cheng X; Yu Q; Qian K; Ding X; Liu R; Zhang B; Xing L; Li M
    PLoS One; 2013; 8(4):e62367. PubMed ID: 23626810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comprehensive analysis of Candida albicans phosphoproteome reveals dynamic changes in phosphoprotein abundance during hyphal morphogenesis.
    Ghorai P; Irfan M; Narula A; Datta A
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9731-9743. PubMed ID: 30121747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.