BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 28512718)

  • 1. Development of In Vitro-In Vivo Correlation for Potassium Chloride Extended Release Tablet Formulation Using Urinary Pharmacokinetic Data.
    Mittapalli RK; Marroum P; Qiu Y; Apfelbaum K; Xiong H
    Pharm Res; 2017 Jul; 34(7):1527-1533. PubMed ID: 28512718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of In Vitro-In Vivo Correlation for Upadacitinib Extended-Release Tablet Formulation.
    Mohamed MF; Trueman S; Othman AA; Han JH; Ju TR; Marroum P
    AAPS J; 2019 Oct; 21(6):108. PubMed ID: 31654328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Deconvolution-Based and Absorption Modeling IVIVC for Extended Release Formulations of a BCS III Drug Development Candidate.
    Kesisoglou F; Xia B; Agrawal NG
    AAPS J; 2015 Nov; 17(6):1492-500. PubMed ID: 26290380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convolution-based in vitro-in vivo correlation model for methylphenidate hydrochloride delayed-release and extended-release capsule.
    Gupta PK; Incledon B; Gobburu JVS; Gomeni R
    CPT Pharmacometrics Syst Pharmacol; 2024 Jan; 13(1):132-142. PubMed ID: 37864318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conventional vs Mechanistic IVIVC: A Comparative Study in Establishing Dissolution Safe Space for Extended Release Formulations.
    Kollipara S; Ahmed T; Chougule M; Guntupalli C; Sivadasu P
    AAPS PharmSciTech; 2024 May; 25(5):118. PubMed ID: 38806735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical comparison of dissolution profiles to predict the bioequivalence of extended release formulations.
    Gomez-Mantilla JD; Schaefer UF; Casabo VG; Lehr T; Lehr CM
    AAPS J; 2014 Jul; 16(4):791-801. PubMed ID: 24854895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Extended-Release Formulations Containing Cyclobenzaprine Based on Physiologically Based Biopharmaceutics Modeling and Bioequivalence Safe Space.
    Miranda Dos Santos E; Ferraz HG; Issa MG; Duque MD
    J Pharm Sci; 2023 Dec; 112(12):3131-3140. PubMed ID: 37473918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards in vitro - In vivo correlation models for in situ forming drug implants.
    Wang X; Roy M; Wang R; Kwok O; Wang Y; Wang Y; Qin B; Burgess DJ
    J Control Release; 2024 Jun; 372():648-660. PubMed ID: 38936743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IVIVC Revised.
    Alimpertis N; Simitopoulos A; Tsekouras AA; Macheras P
    Pharm Res; 2024 Feb; 41(2):235-246. PubMed ID: 38191705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candesartan Cilexetil In Vitro-In Vivo Correlation: Predictive Dissolution as a Development Tool.
    Figueroa-Campos A; Sánchez-Dengra B; Merino V; Dahan A; González-Álvarez I; García-Arieta A; González-Álvarez M; Bermejo M
    Pharmaceutics; 2020 Jul; 12(7):. PubMed ID: 32640620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro-in vivo Pharmacokinetic correlation model for quality assurance of antiretroviral drugs.
    Rojas Gómez R; Restrepo Valencia P
    Colomb Med (Cali); 2015 Sep; 46(3):109-16. PubMed ID: 26600625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniaturized screening and performance prediction of tailored subcutaneous extended-release formulations for preclinical in vivo studies.
    Block M; Sieger P; Truenkle C; Saal C; Simon R; Truebenbach I
    Eur J Pharm Sci; 2024 May; 196():106733. PubMed ID: 38408709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerated and Biopredictive In Vitro Release Testing Strategy for Single Agent and Combination Long-Acting Injectables.
    Jain KMH; Ho T; Hoe S; Wan B; Muthal A; Subramanian R; Foti C
    J Pharm Sci; 2024 Jul; 113(7):1885-1897. PubMed ID: 38369022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro-in vivo correlations: tricks and traps.
    Cardot JM; Davit BM
    AAPS J; 2012 Sep; 14(3):491-9. PubMed ID: 22547350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of
    da Silva Honório T; Simon A; Machado RMC; Rodrigues CR; do Carmo FA; Cabral LM; de Sousa VP
    Curr Pharm Des; 2023; 29(38):3040-3049. PubMed ID: 37957861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of data base structure in a successful in vitro-in vivo correlation for pharmaceutical products.
    Roudier B; Davit B; Schütz H; Cardot JM
    AAPS J; 2015 Jan; 17(1):24-34. PubMed ID: 25387995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From in vitro to in vivo: A comprehensive guide to IVIVC development for long-acting therapeutics.
    Pastorin G; Benetti C; Wacker MG
    Adv Drug Deliv Rev; 2023 Aug; 199():114906. PubMed ID: 37286087
    [No Abstract]   [Full Text] [Related]  

  • 18. Explaining in-vitro to in-vivo efficacy correlations in oncology pre-clinical development via a semi-mechanistic mathematical model.
    Huber HJ; Mistry HB
    J Pharmacokinet Pharmacodyn; 2024 Apr; 51(2):169-185. PubMed ID: 37930506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reassessing models of hepatic extraction.
    Ridgway D; Tuszynski JA; Tam YK
    J Biol Phys; 2003 Mar; 29(1):1-21. PubMed ID: 23345816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium chloride: A high risk drug for medication error.
    Kothari D; Kothari S; Agrawal J
    Indian J Anaesth; 2012 Jan; 56(1):90-1. PubMed ID: 22529434
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.