BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28513146)

  • 1. Insights into Antimony Adsorption on {001} TiO
    Yan L; Song J; Chan T; Jing C
    Environ Sci Technol; 2017 Jun; 51(11):6335-6341. PubMed ID: 28513146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antimony sorption and transport mechanisms in removal experiment by Mn-coated biochar.
    Jia X; Zhou J; Liu J; Liu P; Yu L; Wen B; Feng Y
    Sci Total Environ; 2020 Jul; 724():138158. PubMed ID: 32247137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils.
    Vithanage M; Rajapaksha AU; Dou X; Bolan NS; Yang JE; Ok YS
    J Colloid Interface Sci; 2013 Sep; 406():217-24. PubMed ID: 23791229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous removal of antimony and arsenic by nano-TiO
    Long X; Wang T; He M
    Environ Technol; 2023; 44(19):2913-2923. PubMed ID: 35227172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure.
    Guo X; Wu Z; He M; Meng X; Jin X; Qiu N; Zhang J
    J Hazard Mater; 2014 Jul; 276():339-45. PubMed ID: 24910911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Molecular-Weight Organic Acid Complexation Affects Antimony(III) Adsorption by Granular Ferric Hydroxide.
    Li X; Reich T; Kersten M; Jing C
    Environ Sci Technol; 2019 May; 53(9):5221-5229. PubMed ID: 30969111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of organic matter on mobilization of antimony from nanocrystalline titanium dioxide.
    Yang H; Lu X; He M
    Environ Technol; 2018 Jun; 39(12):1515-1521. PubMed ID: 28513293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular level understanding of antimony immobilization mechanism on goethite by the combination of X-ray absorption spectroscopy and density functional theory calculations.
    Sun Q; Liu C; Fan T; Cheng H; Cui P; Gu X; Chen L; Ata-Ul-Karim ST; Zhou D; Wang Y
    Sci Total Environ; 2023 Mar; 865():161294. PubMed ID: 36592910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide.
    Liu R; Xu W; He Z; Lan H; Liu H; Qu J; Prasai T
    Chemosphere; 2015 Nov; 138():616-24. PubMed ID: 26218341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions.
    Vithanage M; Rajapaksha AU; Ahmad M; Uchimiya M; Dou X; Alessi DS; Ok YS
    J Environ Manage; 2015 Mar; 151():443-9. PubMed ID: 25602696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimony Isotope Fractionation during Adsorption on Iron (Oxyhydr)oxides.
    Luo J; Xie X; Shi J; Wang Y
    Environ Sci Technol; 2024 Jan; 58(1):695-703. PubMed ID: 38141021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insight on the adsorption capacity of metallogels for antimonite and antimonate removal: From experimental to theoretical study.
    You D; Min X; Liu L; Ren Z; Xiao X; Pavlostathis SG; Luo J; Luo X
    J Hazard Mater; 2018 Mar; 346():218-225. PubMed ID: 29277041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers That Are Decorated with Zirconium Oxide (ZrO2).
    Luo J; Luo X; Crittenden J; Qu J; Bai Y; Peng Y; Li J
    Environ Sci Technol; 2015 Sep; 49(18):11115-24. PubMed ID: 26301862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of antimony (III) in soil by manganese (IV) oxide using X-ray absorption fine structure.
    Fu L; Shozugawa K; Matsuo M
    J Environ Sci (China); 2018 Nov; 73():31-37. PubMed ID: 30290869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Insights into Ternary Surface Complexation of Arsenite and Cadmium on TiO2.
    Hu S; Yan L; Chan T; Jing C
    Environ Sci Technol; 2015 May; 49(10):5973-9. PubMed ID: 25922967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of oxygen on the adsorption/oxidation of aqueous Sb(III) by Fe-loaded biochar: An X-ray absorption spectroscopy study.
    Dong Z; Zhou J; Huang T; Yan Z; Liu X; Jia X; Zhou W; Li W; Finfrock YZ; Wang X; Liu P
    Sci Total Environ; 2022 Nov; 846():157414. PubMed ID: 35850325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sb(III) and Sb(V) sorption onto Al-rich phases: hydrous Al oxide and the clay minerals kaolinite KGa-1b and oxidized and reduced nontronite NAu-1.
    Ilgen AG; Trainor TP
    Environ Sci Technol; 2012 Jan; 46(2):843-51. PubMed ID: 22136137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced removal of antimony by acid birnessite with doped iron ions: Companied by the structural transformation.
    Lu H; Zhang W; Tao L; Liu F; Zhang J
    Chemosphere; 2019 Jul; 226():834-840. PubMed ID: 30974376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding mechanism of arsenate on rutile (110) and (001) planes studied using grazing-incidence EXAFS measurement and DFT calculation.
    Zhang M; He G; Pan G
    Chemosphere; 2015 Mar; 122():199-205. PubMed ID: 25496736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of nano-silica and biogenic iron (oxyhydr)oxides composites mediated by iron oxidizing bacteria to remove antimonite and antimonate from aqueous solution: Performance and mechanisms.
    Xu R; Li Q; Nan X; Yang Y; Xu B; Li K; Wang L; Zhang Y; Jiang T
    J Hazard Mater; 2022 Jan; 422():126821. PubMed ID: 34419843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.