These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 28513207)

  • 21. Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics.
    Nurzaman SG; Yu X; Kim Y; Iida F
    Bioinspir Biomim; 2015 Mar; 10(2):025004. PubMed ID: 25811228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental influences on evolvable robots.
    Miras K; Ferrante E; Eiben AE
    PLoS One; 2020; 15(5):e0233848. PubMed ID: 32470076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A survey of bio-inspired compliant legged robot designs.
    Zhou X; Bi S
    Bioinspir Biomim; 2012 Dec; 7(4):041001. PubMed ID: 23151609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tegotae-based decentralised control scheme for autonomous gait transition of snake-like robots.
    Kano T; Yoshizawa R; Ishiguro A
    Bioinspir Biomim; 2017 Aug; 12(4):046009. PubMed ID: 28581439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Jumping robots: a biomimetic solution to locomotion across rough terrain.
    Armour R; Paskins K; Bowyer A; Vincent J; Megill W; Bomphrey R
    Bioinspir Biomim; 2007 Sep; 2(3):S65-82. PubMed ID: 17848786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An octopus-bioinspired solution to movement and manipulation for soft robots.
    Calisti M; Giorelli M; Levy G; Mazzolai B; Hochner B; Laschi C; Dario P
    Bioinspir Biomim; 2011 Sep; 6(3):036002. PubMed ID: 21670493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The balance between initial training and lifelong adaptation in evolving robot controllers.
    Walker JH; Garrett SM; Wilson MS
    IEEE Trans Syst Man Cybern B Cybern; 2006 Apr; 36(2):423-32. PubMed ID: 16602601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fundamentals of soft robot locomotion.
    Calisti M; Picardi G; Laschi C
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physical Scaffolding Accelerates the Evolution of Robot Behavior.
    Buckingham D; Bongard J
    Artif Life; 2017; 23(3):351-373. PubMed ID: 28786727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Locomotion and control study on autonomous interventional diagnostic micro-robots].
    Gu DQ; Zhou Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2008 Sep; 32(5):363-8. PubMed ID: 19119659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MAP-Elites Enables Powerful Stepping Stones and Diversity for Modular Robotics.
    Nordmoen J; Veenstra F; Ellefsen KO; Glette K
    Front Robot AI; 2021; 8():639173. PubMed ID: 33996926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flocking algorithm for autonomous flying robots.
    Virágh C; Vásárhelyi G; Tarcai N; Szörényi T; Somorjai G; Nepusz T; Vicsek T
    Bioinspir Biomim; 2014 Jun; 9(2):025012. PubMed ID: 24852272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Review on design and control aspects of ankle rehabilitation robots.
    Jamwal PK; Hussain S; Xie SQ
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):93-101. PubMed ID: 24320195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New trends in robotics for agriculture: integration and assessment of a real fleet of robots.
    Emmi L; Gonzalez-de-Soto M; Pajares G; Gonzalez-de-Santos P
    ScientificWorldJournal; 2014; 2014():404059. PubMed ID: 25143976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intuitive adaptive orientation control of assistive robots for people living with upper limb disabilities.
    Vu DS; Allard UC; Gosselin C; Routhier F; Gosselin B; Campeau-Lecours A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():795-800. PubMed ID: 28813917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An intrinsically safe mechanism for physically coupling humans with robots.
    O'Neill G; Patel H; Artemiadis P
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650510. PubMed ID: 24187325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Worker selection of safe speed and idle condition in simulated monitoring of two industrial robots.
    Karwowski W; Rahimi M
    Ergonomics; 1991 May; 34(5):531-46. PubMed ID: 1884709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling and Control of a Reconfigurable Robot for Achieving Reconfiguration and Locomotion with Different Shapes.
    Samarakoon SMBP; Muthugala MAVJ; Abdulkader RE; Si SW; Tun TT; Elara MR
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conditions for worm-robot locomotion in a flexible environment: theory and experiments.
    Zarrouk D; Sharf I; Shoham M
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1057-67. PubMed ID: 22231667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Different genetic algorithms and the evolution of specialization: a study with groups of simulated neural robots.
    Ferrauto T; Parisi D; Di Stefano G; Baldassarre G
    Artif Life; 2013; 19(2):221-53. PubMed ID: 23514239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.