BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28513433)

  • 1. Distributing tasks via multiple input pathways increases cellular survival in stress.
    Granados AA; Crane MM; Montano-Gutierrez LF; Tanaka RJ; Voliotis M; Swain PS
    Elife; 2017 May; 6():. PubMed ID: 28513433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae.
    Zi Z; Liebermeister W; Klipp E
    PLoS One; 2010 Mar; 5(3):e9522. PubMed ID: 20209100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways.
    Wojda I; Alonso-Monge R; Bebelman JP; Mager WH; Siderius M
    Microbiology (Reading); 2003 May; 149(Pt 5):1193-1204. PubMed ID: 12724381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Down-regulation of TORC2-Ypk1 signaling promotes MAPK-independent survival under hyperosmotic stress.
    Muir A; Roelants FM; Timmons G; Leskoske KL; Thorner J
    Elife; 2015 Aug; 4():. PubMed ID: 26274562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of MAP kinase Hog1 by calmodulin during hyperosmotic stress.
    Kim J; Oh J; Sung GH
    Biochim Biophys Acta; 2016 Nov; 1863(11):2551-2559. PubMed ID: 27421986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Hog1 MAP kinase pathway and the Mec1 DNA damage checkpoint pathway independently control the cellular responses to hydrogen peroxide.
    Haghnazari E; Heyer WD
    DNA Repair (Amst); 2004 Jul; 3(7):769-76. PubMed ID: 15177185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi.
    You T; Ingram P; Jacobsen MD; Cook E; McDonagh A; Thorne T; Lenardon MD; de Moura AP; Romano MC; Thiel M; Stumpf M; Gow NA; Haynes K; Grebogi C; Stark J; Brown AJ
    BMC Res Notes; 2012 May; 5():258. PubMed ID: 22631601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response to hyperosmotic stress.
    Saito H; Posas F
    Genetics; 2012 Oct; 192(2):289-318. PubMed ID: 23028184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Checkpoints in a yeast differentiation pathway coordinate signaling during hyperosmotic stress.
    Nagiec MJ; Dohlman HG
    PLoS Genet; 2012 Jan; 8(1):e1002437. PubMed ID: 22242015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative responses to high pH stress in S. cerevisiae.
    Ariño J
    OMICS; 2010 Oct; 14(5):517-23. PubMed ID: 20726779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways.
    Patterson JC; Goupil LS; Thorner J
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress resistance and signal fidelity independent of nuclear MAPK function.
    Westfall PJ; Patterson JC; Chen RE; Thorner J
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12212-7. PubMed ID: 18719124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress.
    Regot S; de Nadal E; Rodríguez-Navarro S; González-Novo A; Pérez-Fernandez J; Gadal O; Seisenbacher G; Ammerer G; Posas F
    J Biol Chem; 2013 Jun; 288(24):17384-98. PubMed ID: 23645671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae.
    García R; Rodríguez-Peña JM; Bermejo C; Nombela C; Arroyo J
    J Biol Chem; 2009 Apr; 284(16):10901-11. PubMed ID: 19234305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmolarity hypersensitivity of hog1 deleted mutants is suppressed by mutation in KSS1 in budding yeast Saccharomyces cerevisiae.
    Lee SJ; Park SY; Na JG; Kim YJ
    FEMS Microbiol Lett; 2002 Mar; 209(1):9-14. PubMed ID: 12007647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes.
    Rodríguez-Peña JM; García R; Nombela C; Arroyo J
    Yeast; 2010 Aug; 27(8):495-502. PubMed ID: 20641030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reprogramming of nonfermentative metabolism by stress-responsive transcription factors in the yeast Saccharomyces cerevisiae.
    Soontorngun N
    Curr Genet; 2017 Feb; 63(1):1-7. PubMed ID: 27180089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAPK cell-cycle regulation in Saccharomyces cerevisiae and Candida albicans.
    Correia I; Alonso-Monge R; Pla J
    Future Microbiol; 2010 Jul; 5(7):1125-41. PubMed ID: 20632810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae.
    Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R
    FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperosmotic Stress Response Memory is Modulated by Gene Positioning in Yeast.
    Meriem ZB; Khalil Y; Hersen P; Fabre E
    Cells; 2019 Jun; 8(6):. PubMed ID: 31200564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.