BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28513433)

  • 21. Coordination of the Cell Wall Integrity and High-Osmolarity Glycerol Pathways in Response to Ethanol Stress in Saccharomyces cerevisiae.
    Udom N; Chansongkrow P; Charoensawan V; Auesukaree C
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31101611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae.
    Hohmann S
    FEBS Lett; 2009 Dec; 583(24):4025-9. PubMed ID: 19878680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissection of the HOG pathway activated by hydrogen peroxide in Saccharomyces cerevisiae.
    Lee YM; Kim E; An J; Lee Y; Choi E; Choi W; Moon E; Kim W
    Environ Microbiol; 2017 Feb; 19(2):584-597. PubMed ID: 27554843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of High Osmolarity Glycerol and Cell Wall Integrity Pathways in Cadmium Toxicity in
    Zhao Y; Li S; Wang J; Liu Y; Deng Y
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34201004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years.
    Engelberg D; Perlman R; Levitzki A
    Cell Signal; 2014 Dec; 26(12):2865-78. PubMed ID: 25218923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele.
    Westfall PJ; Thorner J
    Eukaryot Cell; 2006 Aug; 5(8):1215-28. PubMed ID: 16896207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Delayed Turnover of Unphosphorylated Ssk1 during Carbon Stress Activates the Yeast Hog1 Map Kinase Pathway.
    Vallejo MC; Mayinger P
    PLoS One; 2015; 10(9):e0137199. PubMed ID: 26340004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Yeast osmoregulation.
    Hohmann S; Krantz M; Nordlander B
    Methods Enzymol; 2007; 428():29-45. PubMed ID: 17875410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses.
    Caspeta L; Nielsen J
    mBio; 2015 Jul; 6(4):e00431. PubMed ID: 26199325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms.
    Ruiz-Roig C; Noriega N; Duch A; Posas F; de Nadal E
    Mol Biol Cell; 2012 Nov; 23(21):4286-96. PubMed ID: 22956768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomics in the detection of damage in microbial systems: cell wall stress in yeast.
    Arroyo J; Bermejo C; García R; Rodríguez-Peña JM
    Clin Microbiol Infect; 2009 Jan; 15 Suppl 1():44-6. PubMed ID: 19220354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induction of Ptp2 and Cmp2 protein phosphatases is crucial for the adaptive response to ER stress in Saccharomyces cerevisiae.
    Mizuno T; Nakamura M; Irie K
    Sci Rep; 2018 Aug; 8(1):13078. PubMed ID: 30166606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How the Pathogenic Fungus Alternaria alternata Copes with Stress via the Response Regulators SSK1 and SHO1.
    Yu PL; Chen LH; Chung KR
    PLoS One; 2016; 11(2):e0149153. PubMed ID: 26863027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery.
    Geijer C; Medrala-Klein D; Petelenz-Kurdziel E; Ericsson A; Smedh M; Andersson M; Goksör M; Nadal-Ribelles M; Posas F; Krantz M; Nordlander B; Hohmann S
    FEBS J; 2013 Aug; 280(16):3854-67. PubMed ID: 23758973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Independent Mechanisms for Acquired Salt Tolerance versus Growth Resumption Induced by Mild Ethanol Pretreatment in
    McDaniel EA; Stuecker TN; Veluvolu M; Gasch AP; Lewis JA
    mSphere; 2018 Nov; 3(6):. PubMed ID: 30487155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae.
    Reiser V; Ruis H; Ammerer G
    Mol Biol Cell; 1999 Apr; 10(4):1147-61. PubMed ID: 10198063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network.
    Chasman D; Ho YH; Berry DB; Nemec CM; MacGilvray ME; Hose J; Merrill AE; Lee MV; Will JL; Coon JJ; Ansari AZ; Craven M; Gasch AP
    Mol Syst Biol; 2014 Nov; 10(11):759. PubMed ID: 25411400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The osmoregulatory pathway represses mating pathway activity in Saccharomyces cerevisiae: isolation of a FUS3 mutant that is insensitive to the repression mechanism.
    Hall JP; Cherkasova V; Elion E; Gustin MC; Winter E
    Mol Cell Biol; 1996 Dec; 16(12):6715-23. PubMed ID: 8943326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time-dependent quantitative multicomponent control of the G₁-S network by the stress-activated protein kinase Hog1 upon osmostress.
    Adrover MÀ; Zi Z; Duch A; Schaber J; González-Novo A; Jimenez J; Nadal-Ribelles M; Clotet J; Klipp E; Posas F
    Sci Signal; 2011 Sep; 4(192):ra63. PubMed ID: 21954289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aggregate Filamentous Growth Responses in Yeast.
    Chow J; Dionne HM; Prabhakar A; Mehrotra A; Somboonthum J; Gonzalez B; Edgerton M; Cullen PJ
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30842272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.