These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28513433)

  • 41. Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress.
    Shiraishi K; Hioki T; Habata A; Yurimoto H; Sakai Y
    J Cell Sci; 2018 Jan; 131(1):. PubMed ID: 29183915
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transient activation of the HOG MAPK pathway regulates bimodal gene expression.
    Pelet S; Rudolf F; Nadal-Ribelles M; de Nadal E; Posas F; Peter M
    Science; 2011 May; 332(6030):732-5. PubMed ID: 21551064
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Yeast chronological lifespan and proteotoxic stress: is autophagy good or bad?
    Sampaio-Marques B; Felgueiras C; Silva A; Rodrigues F; Ludovico P
    Biochem Soc Trans; 2011 Oct; 39(5):1466-70. PubMed ID: 21936835
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stress signal, mediated by a Hog1-like MAP kinase, controls sexual development in fission yeast.
    Kato T; Okazaki K; Murakami H; Stettler S; Fantes PA; Okayama H
    FEBS Lett; 1996 Jan; 378(3):207-12. PubMed ID: 8557102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription.
    de Nadal E; Posas F
    FEBS J; 2015 Sep; 282(17):3275-85. PubMed ID: 25996081
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase.
    de Nadal E; Casadomé L; Posas F
    Mol Cell Biol; 2003 Jan; 23(1):229-37. PubMed ID: 12482976
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress.
    Bandara A; Fraser S; Chambers PJ; Stanley GA
    FEMS Yeast Res; 2009 Dec; 9(8):1208-16. PubMed ID: 19799639
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stress-activated signalling pathways in yeast.
    Toone WM; Jones N
    Genes Cells; 1998 Aug; 3(8):485-98. PubMed ID: 9797451
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential regulation of antagonistic pleiotropy in synthetic and natural populations suggests its role in adaptation.
    Yadav A; Radhakrishnan A; Bhanot G; Sinha H
    G3 (Bethesda); 2015 Feb; 5(5):699-709. PubMed ID: 25711830
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxidative stress responses of the yeast Saccharomyces cerevisiae.
    Jamieson DJ
    Yeast; 1998 Dec; 14(16):1511-27. PubMed ID: 9885153
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vacuolar H+-ATPase works in parallel with the HOG pathway to adapt Saccharomyces cerevisiae cells to osmotic stress.
    Li SC; Diakov TT; Rizzo JM; Kane PM
    Eukaryot Cell; 2012 Mar; 11(3):282-91. PubMed ID: 22210831
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation.
    Babazadeh R; Furukawa T; Hohmann S; Furukawa K
    Sci Rep; 2014 Apr; 4():4697. PubMed ID: 24732094
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MPK1/SLT2 Links Multiple Stress Responses with Gene Expression in Budding Yeast by Phosphorylating Tyr1 of the RNAP II CTD.
    Yurko N; Liu X; Yamazaki T; Hoque M; Tian B; Manley JL
    Mol Cell; 2017 Dec; 68(5):913-925.e3. PubMed ID: 29220656
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway.
    Brewster JL; Gustin MC
    Yeast; 1994 Apr; 10(4):425-39. PubMed ID: 7941729
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative study of Saccharomyces cerevisiae wine strains to identify potential marker genes correlated to desiccation stress tolerance.
    Capece A; Votta S; Guaragnella N; Zambuto M; Romaniello R; Romano P
    FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 26882930
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cross-talk in NAD
    James Theoga Raj C; Lin SJ
    Curr Genet; 2019 Oct; 65(5):1113-1119. PubMed ID: 30993413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PKA, PHO and stress response pathways regulate the expression of UDP-glucose pyrophosphorylase through Msn2/4 in budding yeast.
    Yi DG; Huh WK
    FEBS Lett; 2015 Aug; 589(18):2409-16. PubMed ID: 26188548
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae.
    Mouillon JM; Persson BL
    FEMS Yeast Res; 2006 Mar; 6(2):171-6. PubMed ID: 16487340
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Together we are strong--cell wall integrity sensors in yeasts.
    Rodicio R; Heinisch JJ
    Yeast; 2010 Aug; 27(8):531-40. PubMed ID: 20641024
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The stress response in the yeast Saccharomyces cerevisiae].
    Folch-Mallol JL; Garay-Arroyo A; Lledías F; Covarrubias Robles AA
    Rev Latinoam Microbiol; 2004; 46(1-2):24-46. PubMed ID: 17061523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.