These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 28513560)
1. Meta-Chirality: Fundamentals, Construction and Applications. Ma X; Pu M; Li X; Guo Y; Gao P; Luo X Nanomaterials (Basel); 2017 May; 7(5):. PubMed ID: 28513560 [TBL] [Abstract][Full Text] [Related]
2. Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking. Chen Y; Gao J; Yang X Nano Lett; 2018 Jan; 18(1):520-527. PubMed ID: 29206469 [TBL] [Abstract][Full Text] [Related]
3. Chiroptical Metasurfaces: Principles, Classification, and Applications. Kim J; Rana AS; Kim Y; Kim I; Badloe T; Zubair M; Mehmood MQ; Rho J Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206760 [TBL] [Abstract][Full Text] [Related]
4. Chiral metamaterials: enhancement and control of optical activity and circular dichroism. Oh SS; Hess O Nano Converg; 2015; 2(1):24. PubMed ID: 28191410 [TBL] [Abstract][Full Text] [Related]
5. Azimuth-Resolved Circular Dichroism of Metamaterials. Ren S; Liu C; Xu K; Jiang N; Hu F; Tan PH; Zheng H; Xu X; Shen C; Zhang J J Phys Chem Lett; 2022 Feb; 13(7):1697-1704. PubMed ID: 35156806 [TBL] [Abstract][Full Text] [Related]
6. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Wang Z; Cheng F; Winsor T; Liu Y Nanotechnology; 2016 Oct; 27(41):412001. PubMed ID: 27606801 [TBL] [Abstract][Full Text] [Related]
7. Plasmonic Chirality and Circular Dichroism in Bioassembled and Nonbiological Systems: Theoretical Background and Recent Progress. Kong XT; Besteiro LV; Wang Z; Govorov AO Adv Mater; 2020 Oct; 32(41):e1801790. PubMed ID: 30260543 [TBL] [Abstract][Full Text] [Related]
8. Angular-dependent circular dichroism of Tai Chi chiral metamaterials in terahertz region. Dong X; Liu C; Huang Y; Hu F; E Y; Jin Y; Zhou Y; Xu X Appl Opt; 2020 Apr; 59(12):3686-3691. PubMed ID: 32400491 [TBL] [Abstract][Full Text] [Related]
9. One-Dimensional Chirality: Strong Optical Activity in Epsilon-Near-Zero Metamaterials. Rizza C; Di Falco A; Scalora M; Ciattoni A Phys Rev Lett; 2015 Jul; 115(5):057401. PubMed ID: 26274441 [TBL] [Abstract][Full Text] [Related]
10. Highly Efficient Anisotropic Chiral Plasmonic Metamaterials for Polarization Conversion and Detection. Bai J; Yao Y ACS Nano; 2021 Sep; 15(9):14263-14274. PubMed ID: 34383483 [TBL] [Abstract][Full Text] [Related]
11. Metamaterials: a new frontier of science and technology. Liu Y; Zhang X Chem Soc Rev; 2011 May; 40(5):2494-507. PubMed ID: 21234491 [TBL] [Abstract][Full Text] [Related]
12. Phototransformation of achiral metasurfaces into handedness-selectable transient chiral media. Kim AS; Goswami A; Taghinejad M; Cai W Proc Natl Acad Sci U S A; 2024 Mar; 121(13):e2318713121. PubMed ID: 38498706 [TBL] [Abstract][Full Text] [Related]
13. Preserving Spin States upon Reflection: Linear and Nonlinear Responses of a Chiral Meta-Mirror. Kang L; Rodrigues SP; Taghinejad M; Lan S; Lee KT; Liu Y; Werner DH; Urbas A; Cai W Nano Lett; 2017 Nov; 17(11):7102-7109. PubMed ID: 29072915 [TBL] [Abstract][Full Text] [Related]
14. Thermally Reconfigurable, 3D Chiral Optical Metamaterials: Building with Colloidal Nanoparticle Assemblies. Choi YC; Yang S; Murray CB; Kagan CR ACS Nano; 2023 Nov; 17(22):22611-22619. PubMed ID: 37955251 [TBL] [Abstract][Full Text] [Related]
15. Optical activity in monolayer black phosphorus due to extrinsic chirality. Hong Q; Xu W; Zhang J; Zhu Z; Yuan X; Qin S Opt Lett; 2019 Apr; 44(7):1774-1777. PubMed ID: 30933144 [TBL] [Abstract][Full Text] [Related]