BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28513614)

  • 1. Recurrent somatic JAK-STAT pathway variants within a RUNX1-mutated pedigree.
    Tawana K; Wang J; Király PA; Kállay K; Benyó G; Zombori M; Csomor J; Al Seraihi A; Rio-Machin A; Matolcsy A; Chelala C; Cavenagh J; Fitzgibbon J; Bödör C
    Eur J Hum Genet; 2017 Aug; 25(8):1020-1024. PubMed ID: 28513614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of RUNX1-JAK2 in Human Induced Pluripotent Stem Cell-Derived Hematopoietic Cells Activates the JAK-STAT and MYC Pathways.
    Fortschegger K; Husa AM; Schinnerl D; Nebral K; Strehl S
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A new form of familial platelet disorder caused by germline mutations in RUNX1 in a pedigree].
    Guan J; Wang LL; Wang CY; Zhu XM; Shuai HZ; Yi X; Zou L; Yu D; Cheng H
    Zhonghua Nei Ke Za Zhi; 2023 Apr; 62(4):393-400. PubMed ID: 37032134
    [No Abstract]   [Full Text] [Related]  

  • 4. Mutational analysis of JAK2, CBL, RUNX1, and NPM1 genes in familial aggregation of hematological malignancies.
    Hamadou WS; Bourdon V; Gaildrat P; Besbes S; Fabre A; Youssef YB; Regaieg H; Laatiri MA; Eisinger F; Mari V; Gesta P; Dreyfus H; Bonadona V; Dugast C; Zattara H; Faivre L; Jemni SY; Noguchi T; Khélif A; Sobol H; Soua Z
    Ann Hematol; 2016 Jun; 95(7):1043-50. PubMed ID: 27106701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Familial leukemia due to germline RUNX1 mutations: lessons learned from two decades of research and unsolved problems].
    Osato M; Nambu A
    Rinsho Ketsueki; 2020; 61(6):687-696. PubMed ID: 32624544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy.
    Owen CJ; Toze CL; Koochin A; Forrest DL; Smith CA; Stevens JM; Jackson SC; Poon MC; Sinclair GD; Leber B; Johnson PR; Macheta A; Yin JA; Barnett MJ; Lister TA; Fitzgibbon J
    Blood; 2008 Dec; 112(12):4639-45. PubMed ID: 18723428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal sequencing of RUNX1 familial platelet disorder: new insights into genetic mechanisms of transformation to myeloid malignancies.
    Duarte BKL; Yamaguti-Hayakawa GG; Medina SS; Siqueira LH; Snetsinger B; Costa FF; Rauh MJ; Ozelo MC
    Br J Haematol; 2019 Sep; 186(5):724-734. PubMed ID: 31124578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder.
    Preudhomme C; Renneville A; Bourdon V; Philippe N; Roche-Lestienne C; Boissel N; Dhedin N; André JM; Cornillet-Lefebvre P; Baruchel A; Mozziconacci MJ; Sobol H
    Blood; 2009 May; 113(22):5583-7. PubMed ID: 19357396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The clinical phenotype of germline RUNX1 mutations in relation to the accompanying somatic variants and RUNX1 isoform expression.
    Cabrerizo Granados D; Barbosa I; Baliakas P; Hellström-Lindberg E; Lundin V
    Genes Chromosomes Cancer; 2023 Nov; 62(11):672-677. PubMed ID: 37303296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and molecular characterization of a novel 3′ mutation in RUNX1 in a family with familial platelet disorder.
    Churpek JE; Garcia JS; Madzo J; Jackson SA; Onel K; Godley LA
    Leuk Lymphoma; 2010 Oct; 51(10):1931-5. PubMed ID: 20846103
    [No Abstract]   [Full Text] [Related]  

  • 11. RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML.
    Brown AL; Arts P; Carmichael CL; Babic M; Dobbins J; Chong CE; Schreiber AW; Feng J; Phillips K; Wang PPS; Ha T; Homan CC; King-Smith SL; Rawlings L; Vakulin C; Dubowsky A; Burdett J; Moore S; McKavanagh G; Henry D; Wells A; Mercorella B; Nicola M; Suttle J; Wilkins E; Li XC; Michaud J; Brautigan P; Cannon P; Altree M; Jaensch L; Fine M; Butcher C; D'Andrea RJ; Lewis ID; Hiwase DK; Papaemmanuil E; Horwitz MS; Natsoulis G; Rienhoff HY; Patton N; Mapp S; Susman R; Morgan S; Cooney J; Currie M; Popat U; Bochtler T; Izraeli S; Bradstock K; Godley LA; Krämer A; Fröhling S; Wei AH; Forsyth C; Mar Fan H; Poplawski NK; Hahn CN; Scott HS
    Blood Adv; 2020 Mar; 4(6):1131-1144. PubMed ID: 32208489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinctive phenotypes in two children with novel germline
    Bagla S; Regling KA; Wakeling EN; Gadgeel M; Buck S; Zaidi AU; Flore LA; Chicka M; Schiffer CA; Chitlur MB; Ravindranath Y
    Pediatr Hematol Oncol; 2021 Feb; 38(1):65-79. PubMed ID: 32990483
    [No Abstract]   [Full Text] [Related]  

  • 13. JAK2 inhibitors in the treatment of myeloproliferative neoplasms.
    Tibes R; Bogenberger JM; Geyer HL; Mesa RA
    Expert Opin Investig Drugs; 2012 Dec; 21(12):1755-74. PubMed ID: 22991927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Old Dog Has a New Trick: Somatic Exonic Deletions in RUNX1 Are Frequent in AML.
    Chakraborty J; Stengel KR
    Clin Cancer Res; 2023 Aug; 29(15):2742-2744. PubMed ID: 37289016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia.
    Benton CB; Boddu PC; DiNardo CD; Bose P; Wang F; Assi R; Pemmaraju N; Kc D; Pierce S; Patel K; Konopleva M; Ravandi F; Garcia-Manero G; Kadia TM; Cortes J; Kantarjian HM; Andreeff M; Verstovsek S
    Cancer; 2019 Jun; 125(11):1855-1866. PubMed ID: 30811597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel pedigree with heterozygous germline RUNX1 mutation causing familial MDS-related AML: can these families serve as a multistep model for leukemic transformation?
    Ripperger T; Steinemann D; Göhring G; Finke J; Niemeyer CM; Strahm B; Schlegelberger B
    Leukemia; 2009 Jul; 23(7):1364-6. PubMed ID: 19387465
    [No Abstract]   [Full Text] [Related]  

  • 17. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders.
    Maslah N; Cassinat B; Verger E; Kiladjian JJ; Velazquez L
    Leukemia; 2017 Aug; 31(8):1661-1670. PubMed ID: 28484264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Somatic mutational landscape of hereditary hematopoietic malignancies caused by germline variants in RUNX1, GATA2, and DDX41.
    Homan CC; Drazer MW; Yu K; Lawrence DM; Feng J; Arriola-Martinez L; Pozsgai MJ; McNeely KE; Ha T; Venugopal P; Arts P; King-Smith SL; Cheah J; Armstrong M; Wang P; Bödör C; Cantor AB; Cazzola M; Degelman E; DiNardo CD; Duployez N; Favier R; Fröhling S; Rio-Machin A; Klco JM; Krämer A; Kurokawa M; Lee J; Malcovati L; Morgan NV; Natsoulis G; Owen C; Patel KP; Preudhomme C; Raslova H; Rienhoff H; Ripperger T; Schulte R; Tawana K; Velloso E; Yan B; Kim E; Sood R; Hsu AP; Holland SM; Phillips K; Poplawski NK; Babic M; Wei AH; Forsyth C; Mar Fan H; Lewis ID; Cooney J; Susman R; Fox LC; Blombery P; Singhal D; Hiwase D; Phipson B; Schreiber AW; Hahn CN; Scott HS; Liu P; Godley LA; Brown AL;
    Blood Adv; 2023 Oct; 7(20):6092-6107. PubMed ID: 37406166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RUNX1 and CBFβ Mutations and Activities of Their Wild-Type Alleles in AML.
    Hyde RK; Liu P; Friedman AD
    Adv Exp Med Biol; 2017; 962():265-282. PubMed ID: 28299663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation.
    Kanagal-Shamanna R; Loghavi S; DiNardo CD; Medeiros LJ; Garcia-Manero G; Jabbour E; Routbort MJ; Luthra R; Bueso-Ramos CE; Khoury JD
    Haematologica; 2017 Oct; 102(10):1661-1670. PubMed ID: 28659335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.