BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 28513628)

  • 1. An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data.
    Carty M; Zamparo L; Sahin M; González A; Pelossof R; Elemento O; Leslie CS
    Nat Commun; 2017 May; 8():15454. PubMed ID: 28513628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP.
    Sahin M; Wong W; Zhan Y; Van Deynze K; Koche R; Leslie CS
    Nat Commun; 2021 Jun; 12(1):3366. PubMed ID: 34099725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico prediction of high-resolution Hi-C interaction matrices.
    Zhang S; Chasman D; Knaack S; Roy S
    Nat Commun; 2019 Dec; 10(1):5449. PubMed ID: 31811132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments.
    Juric I; Yu M; Abnousi A; Raviram R; Fang R; Zhao Y; Zhang Y; Qiu Y; Yang Y; Li Y; Ren B; Hu M
    PLoS Comput Biol; 2019 Apr; 15(4):e1006982. PubMed ID: 30986246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test.
    Lagler TM; Abnousi A; Hu M; Yang Y; Li Y
    Am J Hum Genet; 2021 Feb; 108(2):257-268. PubMed ID: 33545029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments.
    Alinejad-Rokny H; Ghavami Modegh R; Rabiee HR; Ramezani Sarbandi E; Rezaie N; Tam KT; Forrest ARR
    PLoS Comput Biol; 2022 Jun; 18(6):e1010241. PubMed ID: 35749574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring chromatin hierarchical organization via Markov State Modelling.
    Tan ZW; Guarnera E; Berezovsky IN
    PLoS Comput Biol; 2018 Dec; 14(12):e1006686. PubMed ID: 30596637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic Marks Associated with Chromatin Compartments in the CTCF, RNAPII Loop and Genomic Windows.
    Szczepińska T; Mollah AF; Plewczynski D
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks.
    Li T; Jia L; Cao Y; Chen Q; Li C
    Genome Biol; 2018 Apr; 19(1):54. PubMed ID: 29690904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2.
    Kaul A; Bhattacharyya S; Ay F
    Nat Protoc; 2020 Mar; 15(3):991-1012. PubMed ID: 31980751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational characterization of chromatin domain boundary-associated genomic elements.
    Hong S; Kim D
    Nucleic Acids Res; 2017 Oct; 45(18):10403-10414. PubMed ID: 28977568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MSTD: an efficient method for detecting multi-scale topological domains from symmetric and asymmetric 3D genomic maps.
    Ye Y; Gao L; Zhang S
    Nucleic Acids Res; 2019 Jun; 47(11):e65. PubMed ID: 30941409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A predictive modeling approach for cell line-specific long-range regulatory interactions.
    Roy S; Siahpirani AF; Chasman D; Knaack S; Ay F; Stewart R; Wilson M; Sridharan R
    Nucleic Acids Res; 2015 Oct; 43(18):8694-712. PubMed ID: 26338778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of high-resolution 3D intrachromosomal interactions aided by Bayesian network modeling.
    Zhang X; Branciamore S; Gogoshin G; Rodin AS; Riggs AD
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10359-E10368. PubMed ID: 29133398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. normGAM: an R package to remove systematic biases in genome architecture mapping data.
    Liu T; Wang Z
    BMC Genomics; 2019 Dec; 20(Suppl 12):1006. PubMed ID: 31888469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic sequence-based prediction of long-range chromatin interactions suggests a potential role of short tandem repeat sequences in genome organization.
    Nikumbh S; Pfeifer N
    BMC Bioinformatics; 2017 Apr; 18(1):218. PubMed ID: 28420341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the spatial structure and interactions of the genome at sub-kilobase-pair resolution using T2C.
    Kolovos P; Brouwer RWW; Kockx CEM; Lesnussa M; Kepper N; Zuin J; Imam AMA; van de Werken HJG; Wendt KS; Knoch TA; van IJcken WFJ; Grosveld F
    Nat Protoc; 2018 Mar; 13(3):459-477. PubMed ID: 29419817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BAT Hi-C maps global chromatin interactions in an efficient and economical way.
    Huang J; Jiang Y; Zheng H; Ji X
    Methods; 2020 Jan; 170():38-47. PubMed ID: 31442560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.