BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 28513646)

  • 61. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes.
    Di Corato R; Béalle G; Kolosnjaj-Tabi J; Espinosa A; Clément O; Silva AK; Ménager C; Wilhelm C
    ACS Nano; 2015 Mar; 9(3):2904-16. PubMed ID: 25695371
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Magnetic nanoparticles in cancer therapy: how can thermal approaches help?
    Kolosnjaj-Tabi J; Wilhelm C
    Nanomedicine (Lond); 2017 Mar; 12(6):573-575. PubMed ID: 28244818
    [No Abstract]   [Full Text] [Related]  

  • 63. Complex of TNF-α and Modified Fe
    Teo P; Wang X; Chen B; Zhang H; Yang X; Huang Y; Tang J
    Cancer Biother Radiopharm; 2017 Dec; 32(10):379-386. PubMed ID: 29265918
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Means to increase the therapeutic efficiency of magnetic heating of tumors.
    Kettering M; Grau I; Pömpner N; Stapf M; Gajda M; Teichgräber U; Hilger I
    Biomed Tech (Berl); 2015 Oct; 60(5):505-17. PubMed ID: 26351784
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Study on Maximum Specific Loss Power in Fe
    Caizer C; Caizer IS
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576233
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Systemic anti-tumour effects of local thermally sensitive liposome therapy.
    Viglianti BL; Dewhirst MW; Boruta RJ; Park JY; Landon C; Fontanella AN; Guo J; Manzoor A; Hofmann CL; Palmer GM
    Int J Hyperthermia; 2014 Sep; 30(6):385-92. PubMed ID: 25164143
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy.
    Liu X; Zhang Y; Wang Y; Zhu W; Li G; Ma X; Zhang Y; Chen S; Tiwari S; Shi K; Zhang S; Fan HM; Zhao YX; Liang XJ
    Theranostics; 2020; 10(8):3793-3815. PubMed ID: 32206123
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe₂O₄.
    Oh Y; Lee N; Kang HW; Oh J
    Nanotechnology; 2016 Mar; 27(11):115101. PubMed ID: 26871973
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Optimizing the factors which modify thermal enhancement of melphalan in a spontaneous murine tumor.
    Mohamed F; Stuart OA; Glehen O; Urano M; Sugarbaker PH
    Cancer Chemother Pharmacol; 2006 Dec; 58(6):719-24. PubMed ID: 16614851
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects.
    Ponce AM; Viglianti BL; Yu D; Yarmolenko PS; Michelich CR; Woo J; Bally MB; Dewhirst MW
    J Natl Cancer Inst; 2007 Jan; 99(1):53-63. PubMed ID: 17202113
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Improved Hyperthermia Treatment of Tumors Under Consideration of Magnetic Nanoparticle Distribution Using Micro-CT Imaging.
    Dähring H; Grandke J; Teichgräber U; Hilger I
    Mol Imaging Biol; 2015 Dec; 17(6):763-9. PubMed ID: 25896813
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structured superparamagnetic nanoparticles for high performance mediator of magnetic fluid hyperthermia: synthesis, colloidal stability and biocompatibility evaluation.
    Thorat ND; Otari SV; Bohara RA; Yadav HM; Khot VM; Salunkhe AB; Phadatare MR; Prasad AI; Ningthoujam RS; Pawar SH
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():637-46. PubMed ID: 25063164
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy.
    Schleich N; Po C; Jacobs D; Ucakar B; Gallez B; Danhier F; Préat V
    J Control Release; 2014 Nov; 194():82-91. PubMed ID: 25178270
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Polypropylene sulphide coating on magnetic nanoparticles as a novel platform for excellent biocompatible, stimuli-responsive smart magnetic nanocarriers for cancer therapeutics.
    Chauhan M; Basu SM; Qasim M; Giri J
    Nanoscale; 2023 Apr; 15(16):7384-7402. PubMed ID: 36751724
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An in-vivo pilot study into the effects of FDG-mNP in cancer in mice.
    Aras O; Pearce G; Watkins AJ; Nurili F; Medine EI; Guldu OK; Tekin V; Wong J; Ma X; Ting R; Unak P; Akin O
    PLoS One; 2018; 13(8):e0202482. PubMed ID: 30125303
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Selective delivery of liposome-associated cis-dichlorodiammineplatinum(II) by heat and its influence on tumor drug uptake and growth.
    Yatvin MB; Mühlensiepen H; Porschen W; Weinstein JN; Feinendegen LE
    Cancer Res; 1981 May; 41(5):1602-7. PubMed ID: 7194141
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Triple Therapy of HER2
    Zolata H; Afarideh H; Davani FA
    Cancer Biother Radiopharm; 2016 Nov; 31(9):324-329. PubMed ID: 27831759
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.
    Shi D; Sadat ME; Dunn AW; Mast DB
    Nanoscale; 2015 May; 7(18):8209-32. PubMed ID: 25899408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.