These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 28513721)

  • 1. Programmable micrometer-sized motor array based on live cells.
    Xie S; Wang X; Jiao N; Tung S; Liu L
    Lab Chip; 2017 Jun; 17(12):2046-2053. PubMed ID: 28513721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping and viability of swimming bacteria in an optoelectric trap.
    Mishra A; Maltais TR; Walter TM; Wei A; Williams SJ; Wereley ST
    Lab Chip; 2016 Mar; 16(6):1039-46. PubMed ID: 26891971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically-controllable, micron-sized motor based on live cells.
    Gudipati M; D'Souza J; Dharmadhikari J; Dharmadhikari A; Rao B; Mathur D
    Opt Express; 2005 Mar; 13(5):1555-60. PubMed ID: 19495031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of force generation during flagellar assembly through optical trapping of free-swimming Chlamydomonas reinhardtii.
    McCord RP; Yukich JN; Bernd KK
    Cell Motil Cytoskeleton; 2005 Jul; 61(3):137-44. PubMed ID: 15887297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flagella-generated forces reveal gear-type motor in single cells of the green alga, Chlamydomonas reinhardtii.
    D'Souza JS; Gudipati M; Dharmadhikari JA; Dharmadhikari AK; Kashyap A; Sivaramakrishnan M; Rao U; Mathur D; Rao BJ
    Biochem Biophys Res Commun; 2009 Mar; 380(2):266-70. PubMed ID: 19167361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated monolithic optical manipulation.
    Cran-McGreehin S; Krauss TF; Dholakia K
    Lab Chip; 2006 Sep; 6(9):1122-4. PubMed ID: 16929390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optoelectrical microfluidics as a promising tool in biology.
    Mishra A; Kwon JS; Thakur R; Wereley S
    Trends Biotechnol; 2014 Aug; 32(8):414-21. PubMed ID: 24998518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optically induced flow cytometry for continuous microparticle counting and sorting.
    Lin YH; Lee GB
    Biosens Bioelectron; 2008 Dec; 24(4):572-8. PubMed ID: 18635347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optically induced dielectropheresis sorting with automated medium exchange in an integrated optofluidic device resulting in higher cell viability.
    Lee GB; Wu HC; Yang PF; Mai JD
    Lab Chip; 2014 Aug; 14(15):2837-43. PubMed ID: 24911448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles.
    Wang W; Lin YH; Guan RS; Wen TC; Guo TF; Lee GB
    Opt Express; 2009 Sep; 17(20):17603-13. PubMed ID: 19907545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Optically Induced Dielectrophoresis (ODEP)-Based Cell Manipulation in a Microfluidic System on the Properties of Biological Cells.
    Chu PY; Hsieh CH; Lin CR; Wu MH
    Biosensors (Basel); 2020 Jun; 10(6):. PubMed ID: 32560153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct manipulation and observation of the rotational motion of single optically trapped microparticles and biological cells in microvortices.
    Shelby JP; Mutch SA; Chiu DT
    Anal Chem; 2004 May; 76(9):2492-7. PubMed ID: 15117188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap.
    Yang Y; Brimicombe PD; Roberts NW; Dickinson MR; Osipov M; Gleeson HF
    Opt Express; 2008 May; 16(10):6877-82. PubMed ID: 18545390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Massively parallel manipulation of single cells and microparticles using optical images.
    Chiou PY; Ohta AT; Wu MC
    Nature; 2005 Jul; 436(7049):370-2. PubMed ID: 16034413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate Micromanipulation of Optically Induced Dielectrophoresis Based on a Data-Driven Kinematic Model.
    Li G; Ding Z; Wang M; Zhao Z; Xie S; Liu F
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.
    Park JW; Na SC; Nguyen TQ; Paik SM; Kang M; Hong D; Choi IS; Lee JH; Jeon NL
    Biotechnol Bioeng; 2015 Mar; 112(3):494-501. PubMed ID: 25220860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A vortex pump-based optically-transparent microfluidic platform for biotech and medical applications.
    Lei KF; Law WC; Suen YK; Li WJ; Yam Y; Ho HP; Kong SK
    Proc Inst Mech Eng H; 2007 Feb; 221(2):129-41. PubMed ID: 17385567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Counter-propagating optical trapping system for size and refractive index measurement of microparticles.
    Flynn RA; Shao B; Chachisvilis M; Ozkan M; Esener SC
    Biosens Bioelectron; 2006 Jan; 21(7):1029-36. PubMed ID: 16368481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical manipulation of aerosol droplets using a holographic dual and single beam trap.
    Brzobohatý O; Šiler M; Ježek J; Jákl P; Zemánek P
    Opt Lett; 2013 Nov; 38(22):4601-4. PubMed ID: 24322084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.