These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28514064)

  • 1. Brain-Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity.
    Lee M; Lee W; Choi S; Jo JW; Kim J; Park SK; Kim YH
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28514064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Improvement of Long-Term Plasticity in Photonic Synapses Using Ferroelectric Polarization in Hafnia-Based Oxide-Semiconductor Transistors.
    Kim MK; Lee JS
    Adv Mater; 2020 Mar; 32(12):e1907826. PubMed ID: 32053265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High photosensitivity light-controlled planar ZnO artificial synapse for neuromorphic computing.
    Xiao W; Shan L; Zhang H; Fu Y; Zhao Y; Yang D; Jiao C; Sun G; Wang Q; He D
    Nanoscale; 2021 Feb; 13(4):2502-2510. PubMed ID: 33471021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-Term Synaptic Plasticity Emulated in Modified Graphene Oxide Electrolyte Gated IZO-Based Thin-Film Transistors.
    Yang Y; Wen J; Guo L; Wan X; Du P; Feng P; Shi Y; Wan Q
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30281-30286. PubMed ID: 27748109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromorphic Active Pixel Image Sensor Array for Visual Memory.
    Hong S; Cho H; Kang BH; Park K; Akinwande D; Kim HJ; Kim S
    ACS Nano; 2021 Sep; 15(9):15362-15370. PubMed ID: 34463475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing.
    Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R
    ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic Potentiation and Electric Habituation in Ultrathin Memristive Synapses Based on Monolayer MoS
    He HK; Yang R; Zhou W; Huang HM; Xiong J; Gan L; Zhai TY; Guo X
    Small; 2018 Apr; 14(15):e1800079. PubMed ID: 29504245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realization of tunable artificial synapse and memory based on amorphous oxide semiconductor transistor.
    Dai M; Wang W; Wang P; Iqbal MZ; Annabi N; Amin N
    Sci Rep; 2017 Sep; 7(1):10997. PubMed ID: 28887449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Violet-light stimulated synaptic and learning functions in a zinc-tin oxide photoelectric transistor for neuromorphic computation.
    Lin TR; Shih LC; Cheng PJ; Chen KT; Chen JS
    RSC Adv; 2020 Nov; 10(70):42682-42687. PubMed ID: 35514904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxide Neuromorphic Transistors Gated by Polyvinyl Alcohol Solid Electrolytes with Ultralow Power Consumption.
    Guo LQ; Han H; Zhu LQ; Guo YB; Yu F; Ren ZY; Xiao H; Ge ZY; Ding JN
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28352-28358. PubMed ID: 31291719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memristive Synapses with Photoelectric Plasticity Realized in ZnO
    Hu DC; Yang R; Jiang L; Guo X
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6463-6470. PubMed ID: 29388420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Organic Flexible Artificial Bio-Synapses with Long-Term Plasticity for Neuromorphic Computing.
    Wang TY; He ZY; Chen L; Zhu H; Sun QQ; Ding SJ; Zhou P; Zhang DW
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimicking synaptic functionality with an InAs nanowire phototransistor.
    Li B; Wei W; Yan X; Zhang X; Liu P; Luo Y; Zheng J; Lu Q; Lin Q; Ren X
    Nanotechnology; 2018 Nov; 29(46):464004. PubMed ID: 30246691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradable Photonic Synaptic Transistors Based on Natural Biomaterials and Carbon Nanotubes.
    Ou Q; Yang B; Zhang J; Liu D; Chen T; Wang X; Hao D; Lu Y; Huang J
    Small; 2021 Mar; 17(10):e2007241. PubMed ID: 33590701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory.
    Ren ZY; Zhu LQ; Guo YB; Long TY; Yu F; Xiao H; Lu HL
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7833-7839. PubMed ID: 31961648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the photoresponse of amorphous In-Ga-Zn-O and zinc oxynitride semiconductor devices by the extraction of sub-gap-state distribution and device simulation.
    Jang JT; Park J; Ahn BD; Kim DM; Choi SJ; Kim HS; Kim DH
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15570-7. PubMed ID: 26094854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionotronic Halide Perovskite Drift-Diffusive Synapses for Low-Power Neuromorphic Computation.
    John RA; Yantara N; Ng YF; Narasimman G; Mosconi E; Meggiolaro D; Kulkarni MR; Gopalakrishnan PK; Nguyen CA; De Angelis F; Mhaisalkar SG; Basu A; Mathews N
    Adv Mater; 2018 Dec; 30(51):e1805454. PubMed ID: 30334296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZnO nanowire optoelectronic synapse for neuromorphic computing.
    Shen C; Gao X; Chen C; Ren S; Xu JL; Xia YD; Wang SD
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34736234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity.
    Bill J; Schuch K; BrĂ¼derle D; Schemmel J; Maass W; Meier K
    Front Comput Neurosci; 2010; 4():129. PubMed ID: 21031027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Ionic-Electronic Hybrid Oxide Synaptic TFTs with Programmable Dynamic Plasticity for Brain-Inspired Neuromorphic Computing.
    John RA; Ko J; Kulkarni MR; Tiwari N; Chien NA; Ing NG; Leong WL; Mathews N
    Small; 2017 Aug; 13(32):. PubMed ID: 28656608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.