BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 28514117)

  • 1. Tailored Ahp-cyclodepsipeptides as Potent Non-covalent Serine Protease Inhibitors.
    Köcher S; Rey J; Bongard J; Tiaden AN; Meltzer M; Richards PJ; Ehrmann M; Kaiser M
    Angew Chem Int Ed Engl; 2017 Jul; 56(29):8555-8558. PubMed ID: 28514117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramolecular modulation of serine protease inhibitor activity in a marine cyanobacterium with antifeedant properties.
    Matthew S; Ratnayake R; Becerro MA; Ritson-Williams R; Paul VJ; Luesch H
    Mar Drugs; 2010 Jun; 8(6):1803-16. PubMed ID: 20631871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery libraries targeting the major enzyme classes: the serine hydrolases.
    Otrubova K; Srinivasan V; Boger DL
    Bioorg Med Chem Lett; 2014 Aug; 24(16):3807-13. PubMed ID: 25037918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism-Based Macrocyclic Inhibitors of Serine Proteases.
    Damalanka VC; Banas V; De Bona P; Kashipathy MM; Battaile K; Lovell S; Janetka JW
    J Med Chem; 2024 Mar; 67(6):4833-4854. PubMed ID: 38477709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diarylethene-Based Photoswitchable Inhibitors of Serine Proteases.
    Babii O; Afonin S; Diel C; Huhn M; Dommermuth J; Schober T; Koniev S; Hrebonkin A; Nesterov-Mueller A; Komarov IV; Ulrich AS
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):21789-21794. PubMed ID: 34268844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monocyclic β-lactams are selective, mechanism-based inhibitors of rhomboid intramembrane proteases.
    Pierrat OA; Strisovsky K; Christova Y; Large J; Ansell K; Bouloc N; Smiljanic E; Freeman M
    ACS Chem Biol; 2011 Apr; 6(4):325-35. PubMed ID: 21175222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Versatile and Robust Serine Protease Inhibitor Scaffold from
    Chen X; Leahy D; Van Haeften J; Hartfield P; Prentis PJ; van der Burg CA; Surm JM; Pavasovic A; Madio B; Hamilton BR; King GF; Undheim EAB; Brattsand M; Harris JM
    Mar Drugs; 2019 Dec; 17(12):. PubMed ID: 31842369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Cysteine and Serine Proteases to Discover New Drugs Against Neglected Tropical Diseases.
    Dos Santos Nascimento IJ; de Moura RO
    Curr Med Chem; 2024; 31(16):2133-2134. PubMed ID: 38785275
    [No Abstract]   [Full Text] [Related]  

  • 9. Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors.
    Adibekian A; Martin BR; Wang C; Hsu KL; Bachovchin DA; Niessen S; Hoover H; Cravatt BF
    Nat Chem Biol; 2011 May; 7(7):469-78. PubMed ID: 21572424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kempopeptin C, a Novel Marine-Derived Serine Protease Inhibitor Targeting Invasive Breast Cancer.
    Al-Awadhi FH; Salvador LA; Law BK; Paul VJ; Luesch H
    Mar Drugs; 2017 Sep; 15(9):. PubMed ID: 28926939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent activity-based probes for imaging of serine proteases.
    Skorenski M; Ji S; Verhelst SHL
    Biochem Soc Trans; 2024 Apr; 52(2):923-935. PubMed ID: 38629725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiating serine and cysteine protease mechanisms by new covalent QSAR descriptors.
    Shokhen M; Traube T; Vijayakumar S; Hirsch M; Uritsky N; Albeck A
    Chembiochem; 2011 May; 12(7):1023-6. PubMed ID: 21438106
    [No Abstract]   [Full Text] [Related]  

  • 13. Design of Benzoxathiazin-3-one 1,1-Dioxides as a New Class of Irreversible Serine Hydrolase Inhibitors: Discovery of a Uniquely Selective PNPLA4 Inhibitor.
    Kornahrens AF; Cognetta AB; Brody DM; Matthews ML; Cravatt BF; Boger DL
    J Am Chem Soc; 2017 May; 139(20):7052-7061. PubMed ID: 28498651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective inhibition of plant serine hydrolases by agrochemicals revealed by competitive ABPP.
    Kaschani F; Nickel S; Pandey B; Cravatt BF; Kaiser M; van der Hoorn RA
    Bioorg Med Chem; 2012 Jan; 20(2):597-600. PubMed ID: 21764588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Late-Stage Modification of (-)-Doliculide Derivatives Using Matteson's Homologation Approach.
    Tost M; Kazmaier U
    Mar Drugs; 2024 Apr; 22(4):. PubMed ID: 38667782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cystine-knot peptide inhibitors of HTRA1 bind to a cryptic pocket within the active site region.
    Li Y; Wei Y; Ultsch M; Li W; Tang W; Tombling B; Gao X; Dimitrova Y; Gampe C; Fuhrmann J; Zhang Y; Hannoush RN; Kirchhofer D
    Nat Commun; 2024 May; 15(1):4359. PubMed ID: 38777835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between HTRA1 and classical signalling pathways in organogenesis and diseases.
    Oka C; Saleh R; Bessho Y; Reza HM
    Saudi J Biol Sci; 2022 Apr; 29(4):1919-1927. PubMed ID: 35531175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An allosteric HTRA1-calpain 2 complex with restricted activation profile.
    Rey J; Breiden M; Lux V; Bluemke A; Steindel M; Ripkens K; Möllers B; Bravo Rodriguez K; Boisguerin P; Volkmer R; Mieres-Perez J; Clausen T; Sanchez-Garcia E; Ehrmann M
    Proc Natl Acad Sci U S A; 2022 Apr; 119(14):e2113520119. PubMed ID: 35349341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years.
    Zhang JN; Xia YX; Zhang HJ
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting eukaryotic proteases for natural products-based drug development.
    Al-Awadhi FH; Luesch H
    Nat Prod Rep; 2020 Jun; 37(6):827-860. PubMed ID: 32519686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.