These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28514178)

  • 21. Atomic heterojunction-induced accelerated charge transfer for boosted photocatalytic hydrogen evolution over 1D CdS nanorod/2D ZnIn
    Li P; Liu M; Li J; Guo J; Zhou Q; Zhao X; Wang S; Wang L; Wang J; Chen Y; Zhang J; Shen Q; Qu P; Sun H
    J Colloid Interface Sci; 2021 Dec; 604():500-507. PubMed ID: 34274713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gradient Hydrogen Migration Modulated with Self-Adapting S Vacancy in Copper-Doped ZnIn
    Zhang S; Zhang Z; Si Y; Li B; Deng F; Yang L; Liu X; Dai W; Luo S
    ACS Nano; 2021 Sep; 15(9):15238-15248. PubMed ID: 34409833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxygen Vacancy Engineering of Bi
    Jin X; Lv C; Zhou X; Ye L; Xie H; Liu Y; Su H; Zhang B; Chen G
    ChemSusChem; 2019 Jun; 12(12):2740-2747. PubMed ID: 30941909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical 3D ZnIn2S4/graphene nano-heterostructures: their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries.
    Kale SB; Kalubarme RS; Mahadadalkar MA; Jadhav HS; Bhirud AP; Ambekar JD; Park CJ; Kale BB
    Phys Chem Chem Phys; 2015 Dec; 17(47):31850-61. PubMed ID: 26568094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of graphene wrapped ZnIn2S4 microspheres heterojunction with enhanced interfacial contact and its improved photocatalytic performance.
    Li H; Yu H; Chen S; Zhao H; Zhang Y; Quan X
    Dalton Trans; 2014 Feb; 43(7):2888-94. PubMed ID: 24343517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction.
    Gao S; Sun Z; Liu W; Jiao X; Zu X; Hu Q; Sun Y; Yao T; Zhang W; Wei S; Xie Y
    Nat Commun; 2017 Feb; 8():14503. PubMed ID: 28220847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction dual vacancies to regulate the energy band structure of ZnIn
    Zhang G; Yang J; Huang Z; Pan G; Xie B; Ni Z; Xia S
    J Hazard Mater; 2023 Jan; 441():129916. PubMed ID: 36103766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to boost the photocatalytic activity.
    Ji M; Chen R; Di J; Liu Y; Li K; Chen Z; Xia J; Li H
    J Colloid Interface Sci; 2019 Jan; 533():612-620. PubMed ID: 30193148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production.
    Hou J; Yang C; Cheng H; Wang Z; Jiao S; Zhu H
    Phys Chem Chem Phys; 2013 Oct; 15(37):15660-8. PubMed ID: 23942887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of layer-like Ni(OH)
    Li S; Dai D; Ge L; Gao Y; Han C; Xiao N
    Dalton Trans; 2017 Aug; 46(32):10620-10629. PubMed ID: 28401230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst.
    Qiu P; Yao J; Chen H; Jiang F; Xie X
    J Hazard Mater; 2016 Nov; 317():158-168. PubMed ID: 27267690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hierarchical SnS@ZnIn
    Gunjal AR; Kulkarni AK; Kawade UV; Sethi YA; Sonawane RS; Ook-Baeg J; Nagawade AV; Kale BB
    Nanoscale Adv; 2020 Jun; 2(6):2577-2586. PubMed ID: 36133357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of Heterogeneous-Phase Solid-Solution Promoting Band Structure and Charge Separation for Enhancing Photocatalytic CO
    Zeng C; Huang H; Zhang T; Dong F; Zhang Y; Hu Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27773-27783. PubMed ID: 28762265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of ZnIn
    Wang G; Chen W; Zhang Y; Xu Q; Li Y; Foo ML; Tang L
    RSC Adv; 2021 Mar; 11(16):9296-9302. PubMed ID: 35423424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasma-induced defect engineering: Boosted the reverse water gas shift reaction performance with electron trap.
    Yang J; Zhu X; Yu Q; Zhou G; Li Q; Wang C; Hua Y; She Y; Xu H; Li H
    J Colloid Interface Sci; 2020 Nov; 580():814-821. PubMed ID: 32731165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO
    Hou J; Cao S; Wu Y; Gao Z; Liang F; Sun Y; Lin Z; Sun L
    Chemistry; 2017 Jul; 23(40):9481-9485. PubMed ID: 28516736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defect-Mediated Slow Carrier Recombination and Broad Photoluminescence in Non-Metal-Doped ZnIn
    Goswami T; Yadav DK; Bhatt H; Kaur G; Shukla A; Babu KJ; Ghosh HN
    J Phys Chem Lett; 2021 May; 12(20):5000-5008. PubMed ID: 34018752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogenated ZnIn
    Wang Y; Chen D; Qin L; Liang J; Huang Y
    Phys Chem Chem Phys; 2019 Dec; 21(45):25484-25494. PubMed ID: 31714570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchical core-shell carbon nanofiber@ZnIn₂S₄ composites for enhanced hydrogen evolution performance.
    Chen Y; Tian G; Ren Z; Pan K; Shi Y; Wang J; Fu H
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13841-9. PubMed ID: 25057818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient photocatalytic hydrogen production over ZnIn
    You K; Li B; Li X; Li R; Wu J; Ma B; Ding Y
    Chem Commun (Camb); 2023 Sep; 59(73):10972-10975. PubMed ID: 37614187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.