These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 28514846)
1. Natural Mutagenesis-Enabled Global Proteomic Study of Metabolic and Carbon Source Implications in Mutant Thermoacidophillic Archaeon Sulfolobus solfataricus PBL2025. Qiu W; Pham TK; Zou X; Ow SY; Wright PC J Proteome Res; 2017 Jul; 16(7):2370-2383. PubMed ID: 28514846 [TBL] [Abstract][Full Text] [Related]
2. Oxidative Stickland reactions in an obligate aerobic organism - amino acid catabolism in the Crenarchaeon Sulfolobus solfataricus. Stark H; Wolf J; Albersmeier A; Pham TK; Hofmann JD; Siebers B; Kalinowski J; Wright PC; Neumann-Schaal M; Schomburg D FEBS J; 2017 Jul; 284(13):2078-2095. PubMed ID: 28497654 [TBL] [Abstract][Full Text] [Related]
3. Change of carbon source causes dramatic effects in the phospho-proteome of the archaeon Sulfolobus solfataricus. Esser D; Pham TK; Reimann J; Albers SV; Siebers B; Wright PC J Proteome Res; 2012 Oct; 11(10):4823-33. PubMed ID: 22639831 [TBL] [Abstract][Full Text] [Related]
4. A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose. Wolf J; Stark H; Fafenrot K; Albersmeier A; Pham TK; Müller KB; Meyer BH; Hoffmann L; Shen L; Albaum SP; Kouril T; Schmidt-Hohagen K; Neumann-Schaal M; Bräsen C; Kalinowski J; Wright PC; Albers SV; Schomburg D; Siebers B Mol Microbiol; 2016 Dec; 102(5):882-908. PubMed ID: 27611014 [TBL] [Abstract][Full Text] [Related]
5. Global effect of the lack of inorganic polyphosphate in the extremophilic archaeon Sulfolobus solfataricus: A proteomic approach. Soto DF; Recalde A; Orell A; Albers SV; Paradela A; Navarro CA; Jerez CA J Proteomics; 2019 Jan; 191():143-152. PubMed ID: 29501848 [TBL] [Abstract][Full Text] [Related]
6. A cool tool for hot and sour Archaea: proteomics of Sulfolobus solfataricus. Kort JC; Esser D; Pham TK; Noirel J; Wright PC; Siebers B Proteomics; 2013 Oct; 13(18-19):2831-50. PubMed ID: 23894103 [TBL] [Abstract][Full Text] [Related]
7. Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus. Ulas T; Riemer SA; Zaparty M; Siebers B; Schomburg D PLoS One; 2012; 7(8):e43401. PubMed ID: 22952675 [TBL] [Abstract][Full Text] [Related]
8. Unraveling the function of the two Entner-Doudoroff branches in the thermoacidophilic Crenarchaeon Sulfolobus solfataricus P2. Kouril T; Wieloch P; Reimann J; Wagner M; Zaparty M; Albers SV; Schomburg D; Ruoff P; Siebers B FEBS J; 2013 Feb; 280(4):1126-38. PubMed ID: 23279921 [TBL] [Abstract][Full Text] [Related]
9. Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis. Snijders AP; Walther J; Peter S; Kinnman I; de Vos MG; van de Werken HJ; Brouns SJ; van der Oost J; Wright PC Proteomics; 2006 Mar; 6(5):1518-29. PubMed ID: 16447154 [TBL] [Abstract][Full Text] [Related]
10. Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus. Lubelska JM; Jonuscheit M; Schleper C; Albers SV; Driessen AJ Extremophiles; 2006 Oct; 10(5):383-91. PubMed ID: 16604273 [TBL] [Abstract][Full Text] [Related]
11. SulfoSYS (Sulfolobus Systems Biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation. Albers SV; Birkeland NK; Driessen AJ; Gertig S; Haferkamp P; Klenk HP; Kouril T; Manica A; Pham TK; Ruoff P; Schleper C; Schomburg D; Sharkey KJ; Siebers B; Sierocinski P; Steuer R; van der Oost J; Westerhoff HV; Wieloch P; Wright PC; Zaparty M Biochem Soc Trans; 2009 Feb; 37(Pt 1):58-64. PubMed ID: 19143602 [TBL] [Abstract][Full Text] [Related]
12. Biochemical, transcriptional and translational evidences of the phenol-meta-degradation pathway by the hyperthermophilic Sulfolobus solfataricus 98/2. Comte A; Christen P; Davidson S; Pophillat M; Lorquin J; Auria R; Simon G; Casalot L PLoS One; 2013; 8(12):e82397. PubMed ID: 24349276 [TBL] [Abstract][Full Text] [Related]
13. [Expression and characterization of chaperonin from Sulfolobus solfataricus P2]. Chu X; Wang L; He Y; Dong Z Wei Sheng Wu Xue Bao; 2008 Oct; 48(10):1324-9. PubMed ID: 19160812 [TBL] [Abstract][Full Text] [Related]
14. Proteome and transcriptional analysis of ethanol-grown Sulfolobus solfataricus P2 reveals ADH2, a potential alcohol dehydrogenase. Chong PK; Burja AM; Radianingtyas H; Fazeli A; Wright PC J Proteome Res; 2007 Oct; 6(10):3985-94. PubMed ID: 17824633 [TBL] [Abstract][Full Text] [Related]
15. Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2. Barry RC; Young MJ; Stedman KM; Dratz EA Electrophoresis; 2006 Jul; 27(14):2970-83. PubMed ID: 16721906 [TBL] [Abstract][Full Text] [Related]
16. Methylation deficiency of chromatin proteins is a non-mutational and epigenetic-like trait in evolved lines of the archaeon Johnson T; Payne S; Grove R; McCarthy S; Oeltjen E; Mach C; Adamec J; Wilson MA; Van Cott K; Blum P J Biol Chem; 2019 May; 294(19):7821-7832. PubMed ID: 30918025 [TBL] [Abstract][Full Text] [Related]
17. Complementation of Sulfolobus solfataricus PBL2025 with an α-mannosidase: effects on surface attachment and biofilm formation. Koerdt A; Jachlewski S; Ghosh A; Wingender J; Siebers B; Albers SV Extremophiles; 2012 Jan; 16(1):115-25. PubMed ID: 22094829 [TBL] [Abstract][Full Text] [Related]