BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 2851502)

  • 1. Ascorbate autoxidation in the presence of iron and copper chelates.
    Buettner GR
    Free Radic Res Commun; 1986; 1(6):349-53. PubMed ID: 2851502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbic acid oxidation and DNA scission catalyzed by iron and copper chelates.
    Aronovitch J; Godinger D; Samuni A; Czapski G
    Free Radic Res Commun; 1987; 2(4-6):241-58. PubMed ID: 2462529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of iron-stimulated catecholamine degradation by the iron-chelators DETAPAC and Desferal. Potentially useful laboratory agents.
    Heikkila RE; Cabbat FS
    Biochem Pharmacol; 1981 Nov; 30(21):2945-7. PubMed ID: 6797434
    [No Abstract]   [Full Text] [Related]  

  • 5. Oxygen reduction and lipid peroxidation by iron chelates with special reference to ferric nitrilotriacetate.
    Hamazaki S; Okada S; Li JL; Toyokuni S; Midorikawa O
    Arch Biochem Biophys; 1989 Jul; 272(1):10-7. PubMed ID: 2500058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific cleavages of DNA by ascorbate in the presence of copper ion or copper chelates.
    Chiou SH; Chang WC; Jou YS; Chung HM; Lo TB
    J Biochem; 1985 Dec; 98(6):1723-6. PubMed ID: 3937842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical usefulness of iron chelating agents.
    Waxman HS; Brown EB
    Prog Hematol; 1969; 6():338-73. PubMed ID: 4976246
    [No Abstract]   [Full Text] [Related]  

  • 8. Ascorbic acid, metal ions and the superoxide radical.
    Halliwell B; Foyer CH
    Biochem J; 1976 Jun; 155(3):697-700. PubMed ID: 182136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of 2,3-dimethyl-1,4-naphthohydroquinone auto-oxidation by copper and by superoxide dismutase.
    Munday R
    Free Radic Biol Med; 1999 Jun; 26(11-12):1475-9. PubMed ID: 10401611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Batch-to-batch variation of Chelex-100 confounds metal-catalysed oxidation. Leaching of inhibitory compounds from a batch of Chelex-100 and their removal by a pre-washing procedure.
    Van Reyk DM; Brown AJ; Jessup W; Dean RT
    Free Radic Res; 1995 Dec; 23(6):533-5. PubMed ID: 8574347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma.
    Minetti M; Forte T; Soriani M; Quaresima V; Menditto A; Ferrari M
    Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):459-65. PubMed ID: 1312330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferrioxamine and its hexadentate iron-chelating metabolites in human post-desferal urine studied by high-performance liquid chromatography and fast atom bombardment mass spectrometry.
    Lehmann WD; Heinrich HC
    Anal Biochem; 1990 Feb; 184(2):219-27. PubMed ID: 2109548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of iron and copper catalysis of ascorbate oxidation.
    Skov KA; Vonderschmitt DJ
    Bioinorg Chem; 1975 Apr; 4(3):199-213. PubMed ID: 236045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model studies of the iron-catalysed Haber-Weiss cycle and the ascorbate-driven Fenton reaction.
    Burkitt MJ; Gilbert BC
    Free Radic Res Commun; 1990; 10(4-5):265-80. PubMed ID: 1963164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron release and uptake by plant ferritin: effects of pH, reduction and chelation.
    Laulhere JP; Briat JF
    Biochem J; 1993 Mar; 290 ( Pt 3)(Pt 3):693-9. PubMed ID: 8457196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual mechanism of mangiferin protection against iron-induced damage to 2-deoxyribose and ascorbate oxidation.
    Pardo-Andreu GL; Delgado R; Núñez-Sellés AJ; Vercesi AE
    Pharmacol Res; 2006 Mar; 53(3):253-60. PubMed ID: 16412661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediates in the aerobic autoxidation of 6-hydroxydopamine: relative importance under different reaction conditions.
    Gee P; Davison AJ
    Free Radic Biol Med; 1989; 6(3):271-84. PubMed ID: 2545550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweier JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):404-11. PubMed ID: 8643079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pH and chelating agents on iron binding by dietary fiber: implications for iron availability.
    Leigh MJ; Miller DD
    Am J Clin Nutr; 1983 Aug; 38(2):202-13. PubMed ID: 6308995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.