These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28515332)

  • 1. The unusual tracheal system within the wing membrane of a dragonfly.
    Guillermo-Ferreira R; Appel E; Urban P; Bispo PC; Gorb SN
    Biol Lett; 2017 May; 13(5):. PubMed ID: 28515332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of the wing colouration in the dragonfly Zenithoptera lanei (Odonata: Libellulidae) and its role in intraspecific communication.
    Guillermo-Ferreira R; Bispo PC; Appel E; Kovalev A; Gorb SN
    J Insect Physiol; 2015 Oct; 81():129-36. PubMed ID: 26188874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin.
    Appel E; Heepe L; Lin CP; Gorb SN
    J Anat; 2015 Oct; 227(4):561-82. PubMed ID: 26352411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation.
    Rajabi H; Ghoroubi N; Stamm K; Appel E; Gorb SN
    Acta Biomater; 2017 Sep; 60():330-338. PubMed ID: 28739543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifatigue properties of dragonfly Pantala flavescens wings.
    Li XJ; Zhang ZH; Liang YH; Ren LQ; Jie M; Yang ZG
    Microsc Res Tech; 2014 May; 77(5):356-62. PubMed ID: 24623401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural coloration predicts the outcome of male contests in the Amazonian damselfly Chalcopteryx scintillans (Odonata: Polythoridae).
    Guillermo-Ferreira R; Bispo PC; Appel E; Kovalev A; Gorb SN
    Arthropod Struct Dev; 2019 Nov; 53():100884. PubMed ID: 31669831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
    Rajabi H; Ghoroubi N; Malaki M; Darvizeh A; Gorb SN
    PLoS One; 2016; 11(8):e0160610. PubMed ID: 27513753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-morphological adaptations of the wing nodus to flight behaviour in four dragonfly species from the family Libellulidae (Odonata: Anisoptera).
    Rajabi H; Stamm K; Appel E; Gorb SN
    Arthropod Struct Dev; 2018 Jul; 47(4):442-448. PubMed ID: 29339328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformation behavior of dragonfly-inspired nodus structured wing in gliding flight through experimental visualization approach.
    Zhang S; Sunami Y; Hashimoto H
    Sci Rep; 2018 Apr; 8(1):5751. PubMed ID: 29636549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of blood in veins of dragonfly wing on the vibration characteristics.
    Hou D; Yin Y; Zhao H; Zhong Z
    Comput Biol Med; 2015 Mar; 58():14-9. PubMed ID: 25577611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for wing development in the Late Palaeozoic Palaeodictyoptera revisited.
    Rosová K; Sinitshenkova ND; Prokop J
    Arthropod Struct Dev; 2021 Jul; 63():101061. PubMed ID: 34098321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings.
    Nguyen SH; Webb HK; Hasan J; Tobin MJ; Crawford RJ; Ivanova EP
    Colloids Surf B Biointerfaces; 2013 Jun; 106():126-34. PubMed ID: 23434701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record.
    Kukalova-Peck J
    J Morphol; 1978 Apr; 156(1):53-125. PubMed ID: 30231597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Golden ratio in venation patterns of dragonfly wings.
    Lu K; Shen S; Miller LM; Huang X
    Sci Rep; 2023 May; 13(1):7820. PubMed ID: 37188747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrasexual selection favours an immune-correlated colour ornament in a dragonfly.
    Moore MP; Martin RA
    J Evol Biol; 2016 Nov; 29(11):2256-2265. PubMed ID: 27467980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature shapes the costs, benefits and geographic diversification of sexual coloration in a dragonfly.
    Moore MP; Lis C; Gherghel I; Martin RA
    Ecol Lett; 2019 Mar; 22(3):437-446. PubMed ID: 30616297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin and diversification of wings: Insights from a neopteran insect.
    Medved V; Marden JH; Fescemyer HW; Der JP; Liu J; Mahfooz N; Popadić A
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15946-51. PubMed ID: 26668365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resilin microjoints: a smart design strategy to avoid failure in dragonfly wings.
    Rajabi H; Shafiei A; Darvizeh A; Gorb SN
    Sci Rep; 2016 Dec; 6():39039. PubMed ID: 27966641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive comparative morphology and developmental staging of final instar larvae toward metamorphosis in the insect order Odonata.
    Okude G; Fukatsu T; Futahashi R
    Sci Rep; 2021 Mar; 11(1):5164. PubMed ID: 33664373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Description of the last-instar larva of Zenithoptera lanei Santos, 1941 (Odonata: Libellulidae).
    Rippel CG; Neiss UG; Del Palacio A; Schröder NM; Fleck G; Hamada N; Martí DA; Schweigmann NJ
    Zootaxa; 2020 Feb; 4732(3):zootaxa.4732.3.11. PubMed ID: 32230256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.