These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28515424)

  • 21. A Sensor for Characterisation of Liquid Materials with High Permittivity and High Dielectric Loss.
    Wang C; Liu X; Huang Z; Yu S; Yang X; Shang X
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modified Split Ring Resonators Sensor for Accurate Complex Permittivity Measurements of Solid Dielectrics.
    Al-Behadili AA; Mocanu IA; Codreanu N; Pantazica M
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33266122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Split ring resonator as a nanoscale optical transducer for heat-assisted magnetic recording.
    Datta A; Zeng Z; Xu X
    Opt Express; 2019 Sep; 27(20):28264-28278. PubMed ID: 31684582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of disorder on magnetic resonance band gap of split-ring resonator structures.
    Aydin K; Guven K; Katsarakis N; Soukoulis C; Ozbay E
    Opt Express; 2004 Nov; 12(24):5896-901. PubMed ID: 19488229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TM-wave propagation controlled by split ring resonator array.
    Sun J; Wang R; Sun L; Zhou J
    Opt Express; 2010 Jul; 18(15):15643-8. PubMed ID: 20720946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Millimeter wave silicon micromachined waveguide probe as an aid for skin diagnosis--results of measurements on phantom material with varied water content.
    Dancila D; Augustine R; Töpfer F; Dudorov S; Hu X; Emtestam L; Tenerz L; Oberhammer J; Rydberg A
    Skin Res Technol; 2014 Feb; 20(1):116-23. PubMed ID: 23845091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-Cost Electromagnetic Split-Ring Resonator Sensor System for the Petroleum Industry.
    Rivera-Lavado A; García-Lampérez A; Jara-Galán ME; Gallo-Valverde E; Sanz P; Segovia-Vargas D
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Sensitivity Microwave Sensor Based on An Interdigital-Capacitor-Shaped Defected Ground Structure for Permittivity Characterization.
    Yeo J; Lee JI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture.
    Aydin K; Cakmak AO; Sahin L; Li Z; Bilotti F; Vegni L; Ozbay E
    Phys Rev Lett; 2009 Jan; 102(1):013904. PubMed ID: 19257195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Submersible Printed Sensor Based on a Monopole-Coupled Split Ring Resonator for Permittivity Characterization.
    Reyes-Vera E; Acevedo-Osorio G; Arias-Correa M; Senior DE
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Efficient and Frequency-Scalable Algorithm for the Evaluation of Relative Permittivity Based on a Reference Data Set and a Microstrip Ring Resonator.
    Joler M
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silver Nanowire/MnO
    Zeraati AS; Arjmand M; Sundararaj U
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14328-14336. PubMed ID: 28378996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modified Microwave Sensor with a Patterned Ground Heater for Detection and Prevention of Ice Accumulation.
    Kozak R; Wiltshire BD; Khandoker MAR; Golovin K; Zarifi MH
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55483-55492. PubMed ID: 33241686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Angular Displacement and Velocity Sensors Based on Coplanar Waveguides (CPWs) Loaded with S-Shaped Split Ring Resonators (S-SRR).
    Naqui J; Coromina J; Karami-Horestani A; Fumeaux C; Martín F
    Sensors (Basel); 2015 Apr; 15(5):9628-50. PubMed ID: 25915590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Resolution Detection of Rock-Forming Minerals by Permittivity Measurements with a Near-Field Scanning Microwave Microscope.
    Gutiérrez-Cano JD; Catalá-Civera JM; López-Buendía AM; Plaza-González PJ; Penaranda-Foix FL
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overcoming the losses of a split ring resonator array with gain.
    Fang A; Huang Z; Koschny T; Soukoulis CM
    Opt Express; 2011 Jun; 19(13):12688-99. PubMed ID: 21716512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wave Propagation in Composites of Plasma and Metamaterials with Negative Permittivity and Permeability.
    Kim H; Hopwood J
    Sci Rep; 2019 Feb; 9(1):3024. PubMed ID: 30816256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electromagnetic characterization of mirror symmetric resonator based metamaterial and frequency tuning: a dielectric based multilayer approach.
    Moniruzzaman M; Islam MT; Samsuzzaman M; Alharbi AG; Soliman MS; Misran N; Islam MS
    Sci Rep; 2022 Jul; 12(1):12497. PubMed ID: 35864131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the lossy dielectric materials using contour mapping.
    Chao HW; Chang TH
    Rev Sci Instrum; 2018 Oct; 89(10):104705. PubMed ID: 30399926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Traceable measurement and imaging of the complex permittivity of a multiphase mineral specimen at micron scales using a microwave microscope.
    Gregory AP; Blackburn JF; Hodgetts TE; Clarke RN; Lees K; Plint S; Dimitrakis GA
    Ultramicroscopy; 2017 Jan; 172():65-74. PubMed ID: 27865149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.