These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 28515449)

  • 21. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.
    Ducharme SW; Liddy JJ; Haddad JM; Busa MA; Claxton LJ; van Emmerik REA
    Hum Mov Sci; 2018 Apr; 58():248-259. PubMed ID: 29505917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ventilatory responses when altering stride frequency at a constant oxygen uptake.
    McMurray RG; Smith LG
    Respir Physiol; 1985 Oct; 62(1):117-24. PubMed ID: 3934726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The transition between walking and running in humans: metabolic and mechanical aspects at different gradients.
    Minetti AE; Ardigò LP; Saibene F
    Acta Physiol Scand; 1994 Mar; 150(3):315-23. PubMed ID: 8010138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics of the vertical ground reaction force component prior to gait transition.
    Li L; Hamill J
    Res Q Exerc Sport; 2002 Sep; 73(3):229-37. PubMed ID: 12230329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dynamics of gait transitions: effects of grade and load.
    Diedrich FJ; Warren WH
    J Mot Behav; 1998 Mar; 30(1):60-78. PubMed ID: 20037021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gait Transitions in Human Infants: Coping with Extremes of Treadmill Speed.
    Vasudevan EV; Patrick SK; Yang JF
    PLoS One; 2016; 11(2):e0148124. PubMed ID: 26828941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Loaded forced-marching shifts mechanical contributions proximally and disrupts stride-to-stride joint work modulation in recruit aged women.
    Krajewski KT; Allen IT; Johnson CC; Dever DE; Ahamed NU; Flanagan SD; Mi Q; Anderst WJ; Connaboy C
    Gait Posture; 2021 Jul; 88():22-27. PubMed ID: 33957553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordination variability around the walk to run transition during human locomotion.
    Seay JF; Haddad JM; van Emmerik RE; Hamill J
    Motor Control; 2006 Apr; 10(2):178-96. PubMed ID: 16871012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Murphy number: how pitch moment of inertia dictates quadrupedal walking and running energetics.
    Polet DT
    J Exp Biol; 2021 Mar; 224(Pt 5):. PubMed ID: 33462135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of stride frequency and foot position at landing on braking force, hip torque, impact peak force and the metabolic cost of running in humans.
    Lieberman DE; Warrener AG; Wang J; Castillo ER
    J Exp Biol; 2015 Nov; 218(Pt 21):3406-14. PubMed ID: 26538175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Steady and transient coordination structures of walking and running.
    Lamoth CJ; Daffertshofer A; Huys R; Beek PJ
    Hum Mov Sci; 2009 Jun; 28(3):371-86. PubMed ID: 19027972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locomotion in the North American mink, a semi-aquatic mammal. II. The effect of an elongate body on running energetics and gait patterns.
    Williams TM
    J Exp Biol; 1983 Jul; 105():283-95. PubMed ID: 6619727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run.
    Hunter I; Smith GA
    Eur J Appl Physiol; 2007 Aug; 100(6):653-61. PubMed ID: 17602239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The correlation between locomotor performance and hindlimb kinematics during burst locomotion in the Florida scrub lizard, Sceloporus woodi.
    McElroy EJ; Archambeau KL; McBrayer LD
    J Exp Biol; 2012 Feb; 215(Pt 3):442-53. PubMed ID: 22246253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energetics and optimization of human walking and running: the 2000 Raymond Pearl memorial lecture.
    McNeill Alexander R
    Am J Hum Biol; 2002; 14(5):641-8. PubMed ID: 12203818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small step or giant leap? Human locomotion on Mars.
    Hawkey A
    J Br Interplanet Soc; 2004; 57(7-8):262-70. PubMed ID: 15856558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inter-stride variability triggers gait transitions in mammals and birds.
    Granatosky MC; Bryce CM; Hanna J; Fitzsimons A; Laird MF; Stilson K; Wall CE; Ross CF
    Proc Biol Sci; 2018 Dec; 285(1893):20181766. PubMed ID: 30963900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Walking speed influences on gait cycle variability.
    Jordan K; Challis JH; Newell KM
    Gait Posture; 2007 Jun; 26(1):128-34. PubMed ID: 16982195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual flow influences gait transition speed and preferred walking speed.
    Mohler BJ; Thompson WB; Creem-Regehr SH; Pick HL; Warren WH
    Exp Brain Res; 2007 Aug; 181(2):221-8. PubMed ID: 17372727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Walking at the preferred stride frequency minimizes muscle activity.
    Russell DM; Apatoczky DT
    Gait Posture; 2016 Mar; 45():181-6. PubMed ID: 26979903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.