These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28515786)

  • 41. Characterization of Lignin Structures in
    Zhu Y; Huang J; Wang K; Wang B; Sun S; Lin X; Song L; Wu A; Li H
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936794
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.
    Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H
    Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pretreatment of bamboo by ultra-high pressure explosion with a high-pressure homogenizer for enzymatic hydrolysis and ethanol fermentation.
    Jiang Z; Fei B; Li Z
    Bioresour Technol; 2016 Aug; 214():876-880. PubMed ID: 27189535
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bamboo - An untapped plant resource for the phytoremediation of heavy metal contaminated soils.
    Bian F; Zhong Z; Zhang X; Yang C; Gai X
    Chemosphere; 2020 May; 246():125750. PubMed ID: 31891850
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dual effect of soluble materials in pretreated lignocellulose on simultaneous saccharification and co-fermentation process for the bioethanol production.
    Qin L; Li X; Liu L; Zhu JQ; Guan QM; Zhang MT; Li WC; Li BZ; Yuan YJ
    Bioresour Technol; 2017 Jan; 224():342-348. PubMed ID: 27919544
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of delignification efficiency with alkaline peroxide on the digestibility of furfural residues for bioethanol production.
    Wang K; Yang H; Chen Q; Sun RC
    Bioresour Technol; 2013 Oct; 146():208-214. PubMed ID: 23934337
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioethanol production from Ipomoea carnea biomass using a potential hybrid yeast strain.
    Kumari R; Pramanik K
    Appl Biochem Biotechnol; 2013 Oct; 171(3):771-85. PubMed ID: 23892623
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bamboo: a new source of carbohydrate for biorefinery.
    He MX; Wang JL; Qin H; Shui ZX; Zhu QL; Wu B; Tan FR; Pan K; Hu QC; Dai LC; Wang WG; Tang XY; Hu Gq
    Carbohydr Polym; 2014 Oct; 111():645-54. PubMed ID: 25037399
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials.
    Wi SG; Cho EJ; Lee DS; Lee SJ; Lee YJ; Bae HJ
    Biotechnol Biofuels; 2015; 8():228. PubMed ID: 26705422
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pretreatment methods for bioethanol production.
    Xu Z; Huang F
    Appl Biochem Biotechnol; 2014 Sep; 174(1):43-62. PubMed ID: 24972651
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Miscanthus as cellulosic biomass for bioethanol production.
    Lee WC; Kuan WC
    Biotechnol J; 2015 Jun; 10(6):840-54. PubMed ID: 26013948
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative morphological transformation of vascular bundles in the culm of moso bamboo (Phyllostachys pubescens).
    Tsuyama T; Hamai K; Kijidani Y; Sugiyama J
    PLoS One; 2023; 18(9):e0290732. PubMed ID: 37733783
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrotropic pretreatment on distillery stillage for efficient cellulosic ethanol production.
    Mikulski D; Kłosowski G
    Bioresour Technol; 2020 Mar; 300():122661. PubMed ID: 31918302
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of a novel ultrasound-assisted alkali pretreatment strategy for the production of bioethanol and xylanases from chili post harvest residue.
    Sindhu R; Binod P; Mathew AK; Abraham A; Gnansounou E; Ummalyma SB; Thomas L; Pandey A
    Bioresour Technol; 2017 Oct; 242():146-151. PubMed ID: 28286012
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell Wall Composition and Biomass Recalcitrance Differences Within a Genotypically Diverse Set of Brachypodium distachyon Inbred Lines.
    Cass CL; Lavell AA; Santoro N; Foster CE; Karlen SD; Smith RA; Ralph J; Garvin DF; Sedbrook JC
    Front Plant Sci; 2016; 7():708. PubMed ID: 27303415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism.
    Wang H; Wang X; Cui Y; Xue Z; Ba Y
    Bioresour Technol; 2018 Sep; 263():444-449. PubMed ID: 29772506
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integrated bioethanol and protein production from brown seaweed Laminaria digitata.
    Hou X; Hansen JH; Bjerre AB
    Bioresour Technol; 2015 Dec; 197():310-7. PubMed ID: 26342344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass.
    Li Y; Cui J; Zhang G; Liu Z; Guan H; Hwang H; Aker WG; Wang P
    Bioresour Technol; 2016 Aug; 214():144-149. PubMed ID: 27132221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using a combined hydrolysis factor to balance enzymatic saccharification and the structural characteristics of lignin during pretreatment of Hybrid poplar with a fully recyclable solid acid.
    Ji H; Song Y; Zhang X; Tan T
    Bioresour Technol; 2017 Aug; 238():575-581. PubMed ID: 28482283
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues.
    Huang C; Lin W; Lai C; Li X; Jin Y; Yong Q
    Bioresour Technol; 2019 Aug; 285():121355. PubMed ID: 31004950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.