These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 2851589)
1. Changes in aerobic and anaerobic ATP-synthesizing activities in hypoxic mouse brain. Ueda H; Hashimoto T; Furuya E; Tagawa K; Kitagawa K; Matsumoto M; Yoneda S; Kimura K; Kamada T J Biochem; 1988 Jul; 104(1):81-6. PubMed ID: 2851589 [TBL] [Abstract][Full Text] [Related]
2. Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy. Cooper CE; Springett R Philos Trans R Soc Lond B Biol Sci; 1997 Jun; 352(1354):669-76. PubMed ID: 9232854 [TBL] [Abstract][Full Text] [Related]
3. Energy metabolism and in vivo cytochrome c oxidase redox relationships in hypoxic rat brain. Sylvia AL; Piantadosi CA; Jöbsis-VanderVliet FF Neurol Res; 1985 Jun; 7(2):81-8. PubMed ID: 2863774 [TBL] [Abstract][Full Text] [Related]
4. Relationships between aerobic and anaerobic energy production in turtle brain in situ. Lutz PL; McMahon P; Rosenthal M; Sick TJ Am J Physiol; 1984 Oct; 247(4 Pt 2):R740-4. PubMed ID: 6093562 [TBL] [Abstract][Full Text] [Related]
5. Dynamic changes in cerebral oxygenation in chemically induced seizures in rats: study by near-infrared spectrophotometry. Hoshi Y; Tamura M Brain Res; 1993 Feb; 603(2):215-21. PubMed ID: 8384918 [TBL] [Abstract][Full Text] [Related]
6. A near-infrared spectrophotometric method for studying brain O2 sufficiency in man during +Gz acceleration. Glaister DH; Jöbsis-VanderVliet FF Aviat Space Environ Med; 1988 Mar; 59(3):199-207. PubMed ID: 2833216 [TBL] [Abstract][Full Text] [Related]
7. Effect of graded hypoxia on the rat hepatic tissue oxygenation and energy metabolism monitored by near-infrared and 31P nuclear magnetic resonance spectroscopy. Seifalian AM; El-Desoky H; Delpy DT; Davidson BR FASEB J; 2001 Dec; 15(14):2642-8. PubMed ID: 11726540 [TBL] [Abstract][Full Text] [Related]
8. Cerebral hemodynamics on near-infrared spectroscopy in hypoxia and ischemia in young animal studies. Takashima S; Hirano S; Kamei S; Hasegawa M; Kimoto H Brain Dev; 1995; 17(5):312-6. PubMed ID: 8579215 [TBL] [Abstract][Full Text] [Related]
9. [Energy metabolism in the cerebrum and the brainstem-cerebellum of the rat brain under hypoxic conditions]. Mizukami S Hokkaido Igaku Zasshi; 1999 Nov; 74(6):431-40. PubMed ID: 10642890 [TBL] [Abstract][Full Text] [Related]
10. Spectrophotometric monitoring of O2 delivery to the exposed rat kidney. Balaban RS; Sylvia AL Am J Physiol; 1981 Sep; 241(3):F257-62. PubMed ID: 6269437 [TBL] [Abstract][Full Text] [Related]
11. Secondary bioenergetic hypoxia. Inhibition of sulfation and glucuronidation reactions in isolated hepatocytes at low O2 concentration. Aw TY; Jones DP J Biol Chem; 1982 Aug; 257(15):8997-9004. PubMed ID: 6284753 [TBL] [Abstract][Full Text] [Related]
12. Reduction of cytochrome-c oxidase copper precedes failing cerebral O2 utilization in fluorocarbon-perfused cats. Stingele R; Wagner B; Kameneva MV; Williams MA; Wilson DA; Thakor NV; Traystman RJ; Hanley DF Am J Physiol; 1996 Aug; 271(2 Pt 2):H579-87. PubMed ID: 8770099 [TBL] [Abstract][Full Text] [Related]
13. Interpretation of BOLD MRI signals in rat brain using simultaneously measured near-infrared spectrophotometric information. Kida I; Yamamoto T; Tamura M NMR Biomed; 1996 Dec; 9(8):333-8. PubMed ID: 9176887 [TBL] [Abstract][Full Text] [Related]
14. Reduction of cytochrome aa3 measured by near-infrared spectroscopy predicts cerebral energy loss in hypoxic piglets. Tsuji M; Naruse H; Volpe J; Holtzman D Pediatr Res; 1995 Mar; 37(3):253-9. PubMed ID: 7784131 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation. Wilson DF; Vinogradov SA J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518 [TBL] [Abstract][Full Text] [Related]
16. Nitrous oxide alters oxidative metabolic activities of rat neocortex in situ. Rosenthal M; Adams MR; LaManna JC Brain Res; 1981 Jun; 213(2):405-14. PubMed ID: 6265027 [TBL] [Abstract][Full Text] [Related]
17. Tumor necrosis factor receptor-associated protein 1 improves hypoxia-impaired energy production in cardiomyocytes through increasing activity of cytochrome c oxidase subunit II. Xiang F; Ma SY; Zhang DX; Zhang Q; Huang YS Int J Biochem Cell Biol; 2016 Oct; 79():239-248. PubMed ID: 27592455 [TBL] [Abstract][Full Text] [Related]
18. Altered glucose metabolism and preserved energy charge and neuronal structures in the brain of mouse intermittently exposed to hypoxia. Cheng F; Xie S; Guo M; Fang H; Li X; Yin J; Lu G; Li Y; Ji X; Yu S J Chem Neuroanat; 2011 Sep; 42(1):65-71. PubMed ID: 21718782 [TBL] [Abstract][Full Text] [Related]
19. Adenosine produces changes in cerebral hemodynamics and metabolism as assessed by near-infrared spectroscopy in late-gestation fetal sheep in utero. Newman JP; Peebles DM; Hanson MA Pediatr Res; 2001 Aug; 50(2):217-21. PubMed ID: 11477206 [TBL] [Abstract][Full Text] [Related]
20. Cat brain cytochrome-c oxidase redox changes induced by hypoxia after blood-fluorocarbon exchange transfusion. Ferrari M; Williams MA; Wilson DA; Thakor NV; Traystman RJ; Hanley DF Am J Physiol; 1995 Aug; 269(2 Pt 2):H417-24. PubMed ID: 7653605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]