BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28516297)

  • 1. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications.
    Powell T; Bowra S; Cooper HJ
    J Am Soc Mass Spectrom; 2017 Sep; 28(9):1775-1786. PubMed ID: 28516297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcritical Water Processing of Proteins: An Alternative to Enzymatic Digestion?
    Powell T; Bowra S; Cooper HJ
    Anal Chem; 2016 Jun; 88(12):6425-32. PubMed ID: 27181872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting.
    Xu G; Chance MR
    Anal Chem; 2005 Apr; 77(8):2437-49. PubMed ID: 15828779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the dehydration products due to thermal decomposition of peptides by liquid chromatography-tandem mass spectrometry.
    Liu C; Topchiy E; Lehmann T; Basile F
    J Mass Spectrom; 2015 Mar; 50(3):625-32. PubMed ID: 25800200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass spectrometry characterization of the thermal decomposition/digestion (TDD) at cysteine in peptides and proteins in the condensed phase.
    Basile F; Zhang S; Kandar SK; Lu L
    J Am Soc Mass Spectrom; 2011 Nov; 22(11):1926-40. PubMed ID: 21952765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides.
    Liang Y; Neta P; Yang X; Stein SE
    J Am Soc Mass Spectrom; 2018 Mar; 29(3):463-469. PubMed ID: 29143271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem mass spectrometry of amidated peptides.
    Mouls L; Subra G; Aubagnac JL; Martinez J; Enjalbal C
    J Mass Spectrom; 2006 Nov; 41(11):1470-83. PubMed ID: 17072914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical investigations of the loss of amino acid side chains in electron capture dissociation of model peptides.
    Fung YM; Chan TW
    J Am Soc Mass Spectrom; 2005 Sep; 16(9):1523-35. PubMed ID: 16023365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of amino acid side chain losses in electron capture dissociation.
    Cooper HJ; Hudgins RR; Håkansson K; Marshall AG
    J Am Soc Mass Spectrom; 2002 Mar; 13(3):241-9. PubMed ID: 11908804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved sequencing of oxidized cysteine and methionine containing peptides using electron transfer dissociation.
    Srikanth R; Wilson J; Bridgewater JD; Numbers JR; Lim J; Olbris MR; Kettani A; Vachet RW
    J Am Soc Mass Spectrom; 2007 Aug; 18(8):1499-506. PubMed ID: 17583533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiating alpha- and beta-aspartic acids by electrospray ionization and low-energy tandem mass spectrometry.
    González LJ; Shimizu T; Satomi Y; Betancourt L; Besada V; Padrón G; Orlando R; Shirasawa T; Shimonishi Y; Takao T
    Rapid Commun Mass Spectrom; 2000; 14(22):2092-102. PubMed ID: 11114015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid online nonenzymatic protein digestion combining microwave heating acid hydrolysis and electrochemical oxidation.
    Basile F; Hauser N
    Anal Chem; 2011 Jan; 83(1):359-67. PubMed ID: 21138252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of histidine oxidation on the dissociation patterns of peptide ions.
    Bridgewater JD; Srikanth R; Lim J; Vachet RW
    J Am Soc Mass Spectrom; 2007 Mar; 18(3):553-62. PubMed ID: 17157528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass spectrometric identification of amino acid transformations during oxidation of peptides and proteins: modifications of methionine and tyrosine.
    Chowdhury SK; Eshraghi J; Wolfe H; Forde D; Hlavac AG; Johnston D
    Anal Chem; 1995 Jan; 67(2):390-8. PubMed ID: 7856883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragmentation of the deprotonated ions of peptides containing cysteine, cysteine sulfinic acid, cysteine sulfonic acid, aspartic acid, and glutamic acid.
    Men L; Wang Y
    Rapid Commun Mass Spectrom; 2006; 20(5):777-84. PubMed ID: 16470564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of microwave-accelerated residue-specific acid cleavage for proteomic applications.
    Swatkoski S; Gutierrez P; Wynne C; Petrov A; Dinman JD; Edwards N; Fenselau C
    J Proteome Res; 2008 Feb; 7(2):579-86. PubMed ID: 18189344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion source-dependent performance of 4-vinylpyridine, iodoacetamide, and N-maleoyl derivatives for the detection of cysteine-containing peptides in complex proteomics.
    Nadler W; Berg R; Walch P; Hanke S; Baalmann M; Kerner A; Trumpp A; Roesli C
    Anal Bioanal Chem; 2016 Mar; 408(8):2055-67. PubMed ID: 26493978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free radical-induced site-specific peptide cleavage in the gas phase: low-energy collision-induced dissociation in ESI- and MALDI mass spectrometry.
    Yin H; Chacon A; Porter NA; Masterson DS
    J Am Soc Mass Spectrom; 2007 May; 18(5):807-16. PubMed ID: 17307363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of enantiomeric amino acids during acid hydrolysis of peptides detected by the liquid chromatography/tandem mass spectroscopy.
    Miyamoto T; Sekine M; Ogawa T; Hidaka M; Homma H; Masaki H
    Chem Biodivers; 2010 Jun; 7(6):1644-50. PubMed ID: 20564678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin and control of ex vivo oxidative peptide modifications prior to mass spectrometry analysis.
    Froelich JM; Reid GE
    Proteomics; 2008 Apr; 8(7):1334-45. PubMed ID: 18306178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.