BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28516297)

  • 21. Process optimization and characterization of hydrolysate from underutilized brown macroalgae (Padina tetrastromatica) after fucoidan extraction through subcritical water hydrolysis.
    Hans N; Solanki D; Nagpal T; Amir H; Naik S; Malik A
    J Environ Manage; 2024 Jan; 349():119497. PubMed ID: 37951112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amino Acid Profiles and Biopotentiality of Hydrolysates Obtained from Comb Penshell (
    Lee HJ; Roy VC; Ho TC; Park JS; Jeong YR; Lee SC; Kim SY; Chun BS
    Mar Drugs; 2021 Mar; 19(3):. PubMed ID: 33804423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. N-Terminal amino acid side-chain cleavage of chemically modified peptides in the gas phase: a mass spectrometry technique for N-terminus identification.
    Chacon A; Masterson DS; Yin H; Liebler DC; Porter NA
    Bioorg Med Chem; 2006 Sep; 14(18):6213-22. PubMed ID: 16784867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of γ-carboxylated tryptic peptides by collision-induced dissociation and electron transfer dissociation mass spectrometry.
    Ramström M; Sandberg H
    Eur J Mass Spectrom (Chichester); 2011; 17(5):497-506. PubMed ID: 22173536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined use of platinum(II) complexes and palladium(II) complexes for selective cleavage of peptides and proteins.
    Milović NM; Dutca LM; Kostić NM
    Inorg Chem; 2003 Jun; 42(13):4036-45. PubMed ID: 12817959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping the tandem mass spectrometric characteristics of citrulline-containing peptides.
    Steckel A; Uray K; Turiák L; Gömöry Á; Drahos L; Hudecz F; Schlosser G
    Rapid Commun Mass Spectrom; 2018 Jun; 32(11):844-850. PubMed ID: 29575159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry.
    Maleknia SD; Brenowitz M; Chance MR
    Anal Chem; 1999 Sep; 71(18):3965-73. PubMed ID: 10500483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fragmentation of intra-peptide and inter-peptide disulfide bonds of proteolytic peptides by nanoESI collision-induced dissociation.
    Mormann M; Eble J; Schwöppe C; Mesters RM; Berdel WE; Peter-Katalinić J; Pohlentz G
    Anal Bioanal Chem; 2008 Nov; 392(5):831-8. PubMed ID: 18663433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of phenylthiocarbamoyl-derivatized peptides by electrospray ionization mass spectrometry: selective isolation and analysis of modified multiply charged peptides for liquid chromatography-tandem mass spectrometry experiments.
    Sanchez A; Perez-Riverol Y; González LJ; Noda J; Betancourt L; Ramos Y; Gil J; Vera R; Padrón G; Besada V
    Anal Chem; 2010 Oct; 82(20):8492-501. PubMed ID: 20853852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of cysteinylation of pharmaceutical-grade human serum albumin by electrospray ionization mass spectrometry and low-energy collision-induced dissociation tandem mass spectrometry.
    Kleinova M; Belgacem O; Pock K; Rizzi A; Buchacher A; Allmaier G
    Rapid Commun Mass Spectrom; 2005; 19(20):2965-73. PubMed ID: 16178042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mass spectrometric characterization of peptides containing different oxidized tryptophan residues.
    Todorovski T; Fedorova M; Hoffmann R
    J Mass Spectrom; 2011 Oct; 46(10):1030-8. PubMed ID: 22012669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein Hydrolysis by Subcritical Water: A New Perspective on Obtaining Bioactive Peptides.
    Rivas-Vela CI; Amaya-Llano SL; Castaño-Tostado E; Castillo-Herrera GA
    Molecules; 2021 Nov; 26(21):. PubMed ID: 34771063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The identification of peptide modifications derived from gel-separated proteins using electrospray triple quadrupole and ion trap analyses.
    Swiderek KM; Davis MT; Lee TD
    Electrophoresis; 1998 May; 19(6):989-97. PubMed ID: 9638945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. S- to N-Palmitoyl Transfer During Proteomic Sample Preparation.
    Ji Y; Bachschmid MM; Costello CE; Lin C
    J Am Soc Mass Spectrom; 2016 Apr; 27(4):677-85. PubMed ID: 26729453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Further studies on the fragmentation of protonated ions of peptides containing aspartic acid, glutamic acid, cysteine sulfinic acid, and cysteine sulfonic acid.
    Men L; Wang Y
    Rapid Commun Mass Spectrom; 2005; 19(1):23-30. PubMed ID: 15570570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrolysis of whey protein isolate using subcritical water.
    Espinoza AD; Morawicki RO; Hager T
    J Food Sci; 2012 Jan; 77(1):C20-6. PubMed ID: 22122092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amino acid side chain induced selectivity in the hydrolysis of peptides catalyzed by a Zr(IV)-substituted Wells-Dawson type polyoxometalate.
    Vanhaecht S; Absillis G; Parac-Vogt TN
    Dalton Trans; 2013 Nov; 42(43):15437-46. PubMed ID: 24018583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with fmoc chemistry and aza-amino acids with heteroatomic side chains.
    Boeglin D; Lubell WD
    J Comb Chem; 2005; 7(6):864-78. PubMed ID: 16283795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus.
    Li Z; Yalcin T; Cassady CJ
    J Mass Spectrom; 2006 Jul; 41(7):939-49. PubMed ID: 16810639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Negative ion dissociation of peptides containing hydroxyl side chains.
    Pu D; Cassady CJ
    Rapid Commun Mass Spectrom; 2008; 22(2):91-100. PubMed ID: 18059044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.