BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28516384)

  • 1. A mutant in the CsDET2 gene leads to a systemic brassinosteriod deficiency and super compact phenotype in cucumber (Cucumis sativus L.).
    Hou S; Niu H; Tao Q; Wang S; Gong Z; Li S; Weng Y; Li Z
    Theor Appl Genet; 2017 Aug; 130(8):1693-1703. PubMed ID: 28516384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mutation in CsDWF7 gene encoding a delta7 sterol C-5(6) desaturase leads to the phenotype of super compact in cucumber (Cucumis sativus L.).
    Zhang H; Liu Z; Wang Y; Mu S; Yue H; Luo Y; Zhang Z; Li Y; Chen P
    Theor Appl Genet; 2024 Jan; 137(1):20. PubMed ID: 38221593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Cytochrome P450 Gene
    Wang H; Li W; Qin Y; Pan Y; Wang X; Weng Y; Chen P; Li Y
    Front Plant Sci; 2017; 8():266. PubMed ID: 28303144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a putative candidate gene encoding 7-dehydrocholesterol reductase involved in brassinosteroids biosynthesis for compact plant architecture in Cucumber (Cucumis sativus L.).
    Zhang M; Song M; Cheng F; Yang Z; Davoudi M; Chen J; Lou Q
    Theor Appl Genet; 2021 Jul; 134(7):2023-2034. PubMed ID: 33683399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mutation of C-24 reductase, a key enzyme involved in brassinolide biosynthesis, confers a novel compact plant architecture phenotype to cucumber.
    Zhang M; Song M; Davoudi M; Cheng F; Yin J; Zha G; Yang Z; Chen J; Lou Q
    Theor Appl Genet; 2022 Aug; 135(8):2711-2723. PubMed ID: 35788747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L.
    Li Y; Yang L; Pathak M; Li D; He X; Weng Y
    Theor Appl Genet; 2011 Oct; 123(6):973-83. PubMed ID: 21735235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus.
    Xia XJ; Huang LF; Zhou YH; Mao WH; Shi K; Wu JX; Asami T; Chen Z; Yu JQ
    Planta; 2009 Nov; 230(6):1185-96. PubMed ID: 19760261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root proteomics reveals cucumber 24-epibrassinolide responses under Ca(NO3)2 stress.
    An Y; Zhou H; Zhong M; Sun J; Shu S; Shao Q; Guo S
    Plant Cell Rep; 2016 May; 35(5):1081-101. PubMed ID: 26931454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency.
    Wang B; Li Y; Zhang WH
    Ann Bot; 2012 Aug; 110(3):681-8. PubMed ID: 22684685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber.
    Cui JX; Zhou YH; Ding JG; Xia XJ; Shi K; Chen SC; Asami T; Chen Z; Yu JQ
    Plant Cell Environ; 2011 Feb; 34(2):347-58. PubMed ID: 21054437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus.
    Xia XJ; Zhou YH; Ding J; Shi K; Asami T; Chen Z; Yu JQ
    New Phytol; 2011 Aug; 191(3):706-720. PubMed ID: 21564100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide is involved in the brassinolide-induced adventitious root development in cucumber.
    Li Y; Wu Y; Liao W; Hu L; Dawuda MM; Jin X; Tang Z; Yang J; Yu J
    BMC Plant Biol; 2020 Mar; 20(1):102. PubMed ID: 32138654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor.
    Chono M; Honda I; Zeniya H; Yoneyama K; Saisho D; Takeda K; Takatsuto S; Hoshino T; Watanabe Y
    Plant Physiol; 2003 Nov; 133(3):1209-19. PubMed ID: 14551335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mutation in CsHY2 encoding a phytochromobilin (PΦB) synthase leads to an elongated hypocotyl 1(elh1) phenotype in cucumber (Cucumis sativus L.).
    Hu L; Liu P; Jin Z; Sun J; Weng Y; Chen P; Du S; Wei A; Li Y
    Theor Appl Genet; 2021 Aug; 134(8):2639-2652. PubMed ID: 34091695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel mutation in TFL1 homolog sustaining determinate growth in cucumber (Cucumis sativus L.).
    Njogu MK; Yang F; Li J; Wang X; Ogweno JO; Chen J
    Theor Appl Genet; 2020 Dec; 133(12):3323-3332. PubMed ID: 32857171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of a cyclin-dependent protein kinase inhibitor, CsSMR1, leads to dwarf and determinate growth in cucumber (Cucumis sativus L.).
    Li S; Zhang Q; Zhang H; Wang J; Sun J; Yang X; Huang S; Zhang Z
    Theor Appl Genet; 2022 Mar; 135(3):915-927. PubMed ID: 34841478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role of brassinosteroids in early fruit development in cucumber.
    Fu FQ; Mao WH; Shi K; Zhou YH; Asami T; Yu JQ
    J Exp Bot; 2008; 59(9):2299-308. PubMed ID: 18515830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An LTR retrotransposon insertion inside CsERECTA for an LRR receptor-like serine/threonine-protein kinase results in compact (cp) plant architecture in cucumber.
    Chen F; Yong J; Zhang G; Liu M; Wang Q; Zhong H; Pan Y; Chen P; Weng Y; Li Y
    Theor Appl Genet; 2023 Mar; 136(3):31. PubMed ID: 36894705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 24-Epibrassinolide Ameliorates Endogenous Hormone Levels to Enhance Low-Temperature Stress Tolerance in Cucumber Seedlings.
    Anwar A; Bai L; Miao L; Liu Y; Li S; Yu X; Li Y
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CsMYB36 is involved in the formation of yellow green peel in cucumber (Cucumis sativus L.).
    Hao N; Du Y; Li H; Wang C; Wang C; Gong S; Zhou S; Wu T
    Theor Appl Genet; 2018 Aug; 131(8):1659-1669. PubMed ID: 29740668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.