BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 28516400)

  • 1. Systematic Investigation of the Role of Surfactant Composition and Choice of oil: Design of a Nanoemulsion-Based Adjuvant Inducing Concomitant Humoral and CD4
    Schmidt ST; Neustrup MA; Harloff-Helleberg S; Korsholm KS; Rades T; Andersen P; Christensen D; Foged C
    Pharm Res; 2017 Aug; 34(8):1716-1727. PubMed ID: 28516400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of a synthetic mycobacterial monomycoloyl glycerol analogue stabilizes dimethyldioctadecylammonium liposomes and potentiates their adjuvant effect in vivo.
    Nordly P; Korsholm KS; Pedersen EA; Khilji TS; Franzyk H; Jorgensen L; Nielsen HM; Agger EM; Foged C
    Eur J Pharm Biopharm; 2011 Jan; 77(1):89-98. PubMed ID: 20940050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522.
    Rose F; Wern JE; Gavins F; Andersen P; Follmann F; Foged C
    J Control Release; 2018 Feb; 271():88-97. PubMed ID: 29217176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Squalene-Based Oil-in-Water Emulsion Adjuvants Using a Self-Emulsifying Drug Delivery System for Enhanced Antigen-Specific Antibody Titers.
    Chae GE; Kim DW; Jin HE
    Int J Nanomedicine; 2022; 17():6221-6231. PubMed ID: 36531114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune responses induced by nano-self-assembled lipid adjuvants based on a monomycoloyl glycerol analogue after vaccination with the Chlamydia trachomatis major outer membrane protein.
    Rodrigues L; Raftopoulos KN; Tandrup Schmidt S; Schneider F; Dietz H; Rades T; Franzyk H; Pedersen AE; Papadakis CM; Christensen D; Winter G; Foged C; Hubert M
    J Control Release; 2018 Sep; 285():12-22. PubMed ID: 29964134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of Cytotoxic T-Lymphocyte Responses Upon Subcutaneous Administration of a Subunit Vaccine Adjuvanted With an Emulsion Containing the Toll-Like Receptor 3 Ligand Poly(I:C).
    Schmidt ST; Pedersen GK; Neustrup MA; Korsholm KS; Rades T; Andersen P; Foged C; Christensen D
    Front Immunol; 2018; 9():898. PubMed ID: 29760705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel oil-in-water emulsion as a potential adjuvant for influenza vaccine: development, characterization, stability and in vivo evaluation.
    Deng J; Cai W; Jin F
    Int J Pharm; 2014 Jul; 468(1-2):187-95. PubMed ID: 24704309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of self-emulsifying oil-in-water emulsion adjuvant and an evaluation of the impact of droplet size on performance.
    Shah RR; Dodd S; Schaefer M; Ugozzoli M; Singh M; Otten GR; Amiji MM; O'Hagan DT; Brito LA
    J Pharm Sci; 2015 Apr; 104(4):1352-61. PubMed ID: 25600347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants.
    Iyer V; Cayatte C; Guzman B; Schneider-Ohrum K; Matuszak R; Snell A; Rajani GM; McCarthy MP; Muralidhara B
    Hum Vaccin Immunother; 2015; 11(7):1853-64. PubMed ID: 26090563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AF03, an alternative squalene emulsion-based vaccine adjuvant prepared by a phase inversion temperature method.
    Klucker MF; Dalençon F; Probeck P; Haensler J
    J Pharm Sci; 2012 Dec; 101(12):4490-500. PubMed ID: 22941944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation and characterization of nanoemulsion intranasal adjuvants: effects of surfactant composition on mucoadhesion and immunogenicity.
    Wong PT; Wang SH; Ciotti S; Makidon PE; Smith DM; Fan Y; Schuler CF; Baker JR
    Mol Pharm; 2014 Feb; 11(2):531-44. PubMed ID: 24320221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. O/W Nanoemulsion as an Adjuvant for an Inactivated H3N2 Influenza Vaccine: Based on Particle Properties and Mode of Carrying.
    Zhao L; Zhu Z; Ma L; Li Y
    Int J Nanomedicine; 2020; 15():2071-2083. PubMed ID: 32273703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vaccine adjuvant activity of emulsified oils from species of the Pinaceae family.
    Fox CB; Van Hoeven N; Granger B; Lin S; Guderian JA; Hartwig A; Marlenee N; Bowen RA; Soultanov V; Carter D
    Phytomedicine; 2019 Nov; 64():152927. PubMed ID: 31465981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulation, high throughput in vitro screening and in vivo functional characterization of nanoemulsion-based intranasal vaccine adjuvants.
    Wong PT; Leroueil PR; Smith DM; Ciotti S; Bielinska AU; Janczak KW; Mullen CH; Groom JV; Taylor EM; Passmore C; Makidon PE; O'Konek JJ; Myc A; Hamouda T; Baker JR
    PLoS One; 2015; 10(5):e0126120. PubMed ID: 25962136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel liposome adjuvant DPC mediates Mycobacterium tuberculosis subunit vaccine well to induce cell-mediated immunity and high protective efficacy in mice.
    Liu X; Da Z; Wang Y; Niu H; Li R; Yu H; He S; Guo M; Wang Y; Luo Y; Ma X; Zhu B
    Vaccine; 2016 Mar; 34(11):1370-8. PubMed ID: 26845736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements.
    Agger EM; Rosenkrands I; Hansen J; Brahimi K; Vandahl BS; Aagaard C; Werninghaus K; Kirschning C; Lang R; Christensen D; Theisen M; Follmann F; Andersen P
    PLoS One; 2008 Sep; 3(9):e3116. PubMed ID: 18776936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers.
    Vandepapelière P; Horsmans Y; Moris P; Van Mechelen M; Janssens M; Koutsoukos M; Van Belle P; Clement F; Hanon E; Wettendorff M; Garçon N; Leroux-Roels G
    Vaccine; 2008 Mar; 26(10):1375-86. PubMed ID: 18272264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-ionic surfactant vesicle-in-water-in-oil (v/w/o) system: potential uses in drug and vaccine delivery.
    Yoshioka T; Skalko N; Gursel M; Gregoriadis G; Florence AT
    J Drug Target; 1995; 2(6):533-9. PubMed ID: 7773616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a stable w/o nano-emulsion as a potential adjuvant for foot and mouth disease virus vaccine.
    Chen Z; Zhang S; Li Z; Ma G; Su Z
    Artif Cells Nanomed Biotechnol; 2017 Aug; 45(5):897-906. PubMed ID: 27322345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of systemic and mucosal immunity against methicillin-resistant Staphylococcus aureus infection by a novel nanoemulsion adjuvant vaccine.
    Sun H; Wei C; Liu B; Jing H; Feng Q; Tong Y; Yang Y; Yang L; Zuo Q; Zhang Y; Zou Q; Zeng H
    Int J Nanomedicine; 2015; 10():7275-90. PubMed ID: 26664118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.