These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28516909)

  • 1. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures.
    Anufriev R; Ramiere A; Maire J; Nomura M
    Nat Commun; 2017 May; 8():15505. PubMed ID: 28516909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ballistic phonon transport in holey silicon.
    Lee J; Lim J; Yang P
    Nano Lett; 2015 May; 15(5):3273-9. PubMed ID: 25861026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-Ballistic Heat Conduction due to Lévy Phonon Flights in Silicon Nanowires.
    Anufriev R; Gluchko S; Volz S; Nomura M
    ACS Nano; 2018 Dec; 12(12):11928-11935. PubMed ID: 30418017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires.
    Hsiao TK; Chang HK; Liou SC; Chu MW; Lee SC; Chang CW
    Nat Nanotechnol; 2013 Jul; 8(7):534-8. PubMed ID: 23812186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropy Reversal of Thermal Conductivity in Silicon Nanowire Networks Driven by Quasi-Ballistic Phonon Transport.
    Kim B; Barbier-Chebbah F; Ogawara Y; Jalabert L; Yanagisawa R; Anufriev R; Nomura M
    ACS Nano; 2024 Apr; 18(15):10557-10565. PubMed ID: 38575375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing ballistic thermal conduction in segmented silicon nanowires.
    Anufriev R; Gluchko S; Volz S; Nomura M
    Nanoscale; 2019 Jul; 11(28):13407-13414. PubMed ID: 31276141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phononic pathways towards rational design of nanowire heat conduction.
    Malhotra A; Maldovan M
    Nanotechnology; 2019 Sep; 30(37):372002. PubMed ID: 31151114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency.
    Hoogeboom-Pot KM; Hernandez-Charpak JN; Gu X; Frazer TD; Anderson EH; Chao W; Falcone RW; Yang R; Murnane MM; Kapteyn HC; Nardi D
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4846-51. PubMed ID: 25831491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams.
    Siemens ME; Li Q; Yang R; Nelson KA; Anderson EH; Murnane MM; Kapteyn HC
    Nat Mater; 2010 Jan; 9(1):26-30. PubMed ID: 19898462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced thermal conduction by surface phonon-polaritons.
    Wu Y; Ordonez-Miranda J; Gluchko S; Anufriev R; Meneses DS; Del Campo L; Volz S; Nomura M
    Sci Adv; 2020 Sep; 6(40):. PubMed ID: 32998899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon transport along long polymer chains with varying configurations: Effects of phonon scattering.
    Zimbovskaya NA; Nitzan A
    J Chem Phys; 2023 Jun; 158(23):. PubMed ID: 37326160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon localization in heat conduction.
    Luckyanova MN; Mendoza J; Lu H; Song B; Huang S; Zhou J; Li M; Dong Y; Zhou H; Garlow J; Wu L; Kirby BJ; Grutter AJ; Puretzky AA; Zhu Y; Dresselhaus MS; Gossard A; Chen G
    Sci Adv; 2018 Dec; 4(12):eaat9460. PubMed ID: 30588489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional thermal channeling: A phenomenon triggered by tight packing of heat sources.
    Honarvar H; Knobloch JL; Frazer TD; Abad B; McBennett B; Hussein MI; Kapteyn HC; Murnane MM; Hernandez-Charpak JN
    Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34580227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon and heat transport control using pillar-based phononic crystals.
    Anufriev R; Nomura M
    Sci Technol Adv Mater; 2018; 19(1):863-870. PubMed ID: 30479674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving Minimal Heat Conductivity by Ballistic Confinement in Phononic Metalattices.
    Chen W; Talreja D; Eichfeld D; Mahale P; Nova NN; Cheng HY; Russell JL; Yu SY; Poilvert N; Mahan G; Mohney SE; Crespi VH; Mallouk TE; Badding JV; Foley B; Gopalan V; Dabo I
    ACS Nano; 2020 Apr; 14(4):4235-4243. PubMed ID: 32223186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics study on the contribution of anisotropic phonon transmission to thermal conductivity of silicon.
    Cheng C; Wang S
    J Phys Condens Matter; 2022 Sep; 34(43):. PubMed ID: 35995038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Randomness-Induced Phonon Localization in Graphene Heat Conduction.
    Hu S; Zhang Z; Jiang P; Chen J; Volz S; Nomura M; Li B
    J Phys Chem Lett; 2018 Jul; 9(14):3959-3968. PubMed ID: 29968477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures.
    Hu S; Zhang Z; Jiang P; Ren W; Yu C; Shiomi J; Chen J
    Nanoscale; 2019 Jun; 11(24):11839-11846. PubMed ID: 31184669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering thermal conductance using a two-dimensional phononic crystal.
    Zen N; Puurtinen TA; Isotalo TJ; Chaudhuri S; Maasilta IJ
    Nat Commun; 2014 Mar; 5():3435. PubMed ID: 24647049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of thermally dead volume on phonon conduction along silicon nanoladders.
    Park W; Sohn J; Romano G; Kodama T; Sood A; Katz JS; Kim BSY; So H; Ahn EC; Asheghi M; Kolpak AM; Goodson KE
    Nanoscale; 2018 Jun; 10(23):11117-11122. PubMed ID: 29873370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.