BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 28516954)

  • 1. Histone deacetylase 10 structure and molecular function as a polyamine deacetylase.
    Hai Y; Shinsky SA; Porter NJ; Christianson DW
    Nat Commun; 2017 May; 8():15368. PubMed ID: 28516954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyamine Deacetylase Structure and Catalysis: Prokaryotic Acetylpolyamine Amidohydrolase and Eukaryotic HDAC10.
    Shinsky SA; Christianson DW
    Biochemistry; 2018 Jun; 57(22):3105-3114. PubMed ID: 29533602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of
    Herbst-Gervasoni CJ; Christianson DW
    Biochemistry; 2019 Dec; 58(49):4957-4969. PubMed ID: 31746596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray Crystallographic Snapshots of Substrate Binding in the Active Site of Histone Deacetylase 10.
    Herbst-Gervasoni CJ; Christianson DW
    Biochemistry; 2021 Feb; 60(4):303-313. PubMed ID: 33449614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of inhibitors to active-site mutants of CD1, the enigmatic catalytic domain of histone deacetylase 6.
    Osko JD; Christianson DW
    Acta Crystallogr F Struct Biol Commun; 2020 Sep; 76(Pt 9):428-437. PubMed ID: 32880591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Function of the Acetylpolyamine Amidohydrolase from the Deep Earth Halophile
    Osko JD; Roose BW; Shinsky SA; Christianson DW
    Biochemistry; 2019 Sep; 58(36):3755-3766. PubMed ID: 31436969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Basis for the Selective Inhibition of HDAC10, the Cytosolic Polyamine Deacetylase.
    Herbst-Gervasoni CJ; Steimbach RR; Morgen M; Miller AK; Christianson DW
    ACS Chem Biol; 2020 Aug; 15(8):2154-2163. PubMed ID: 32659072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pacific oyster polyamine oxidase: a protein missing link in invertebrate evolution.
    Cervelli M; Polticelli F; Angelucci E; Di Muzio E; Stano P; Mariottini P
    Amino Acids; 2015 May; 47(5):949-61. PubMed ID: 25655384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone deacetylase-10 liberates spermidine to support polyamine homeostasis and tumor cell growth.
    Stewart TM; Foley JR; Holbert CE; Klinke G; Poschet G; Steimbach RR; Miller AK; Casero RA
    J Biol Chem; 2022 Oct; 298(10):102407. PubMed ID: 35988653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Versatility in Catalysis and Inhibition of the Class IIb Histone Deacetylases.
    Christianson DW
    Acc Chem Res; 2024 Apr; 57(8):1135-1148. PubMed ID: 38530703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures and kinetics for plant nucleoside triphosphate diphosphohydrolases support a domain motion catalytic mechanism.
    Summers EL; Cumming MH; Oulavallickal T; Roberts NJ; Arcus VL
    Protein Sci; 2017 Aug; 26(8):1627-1638. PubMed ID: 28543850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning and characterization of a novel histone deacetylase HDAC10.
    Guardiola AR; Yao TP
    J Biol Chem; 2002 Feb; 277(5):3350-6. PubMed ID: 11726666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors.
    Cura V; Marechal N; Troffer-Charlier N; Strub JM; van Haren MJ; Martin NI; Cianférani S; Bonnefond L; Cavarelli J
    FEBS J; 2017 Jan; 284(1):77-96. PubMed ID: 27879050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A distal regulatory region of a class I human histone deacetylase.
    Werbeck ND; Shukla VK; Kunze MBA; Yalinca H; Pritchard RB; Siemons L; Mondal S; Greenwood SOR; Kirkpatrick J; Marson CM; Hansen DF
    Nat Commun; 2020 Jul; 11(1):3841. PubMed ID: 32737323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First Fluorescent Acetylspermidine Deacetylation Assay for HDAC10 Identifies Selective Inhibitors with Cellular Target Engagement.
    Herp D; Ridinger J; Robaa D; Shinsky SA; Schmidtkunz K; Yesiloglu TZ; Bayer T; Steimbach RR; Herbst-Gervasoni CJ; Merz A; Romier C; Sehr P; Gunkel N; Miller AK; Christianson DW; Oehme I; Sippl W; Jung M
    Chembiochem; 2022 Jul; 23(14):e202200180. PubMed ID: 35608330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone deacetylase 10: A polyamine deacetylase from the crystal structure to the first inhibitors.
    Lambona C; Zwergel C; Fioravanti R; Valente S; Mai A
    Curr Opin Struct Biol; 2023 Oct; 82():102668. PubMed ID: 37542907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Characterization of CTX-M-64 and CTX-M-14 Provides Insights into the Structure and Catalytic Activity of the CTX-M Class of Enzymes.
    He D; Chiou J; Zeng Z; Chan EW; Liu JH; Chen S
    Antimicrob Agents Chemother; 2016 Oct; 60(10):6084-90. PubMed ID: 27480856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of a novel prolidase from Deinococcus radiodurans identifies new subfamily of bacterial prolidases.
    Are VN; Jamdar SN; Ghosh B; Goyal VD; Kumar A; Neema S; Gadre R; Makde RD
    Proteins; 2017 Dec; 85(12):2239-2251. PubMed ID: 28929533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A barley polyamine oxidase isoform with distinct structural features and subcellular localization.
    Cervelli M; Cona A; Angelini R; Polticelli F; Federico R; Mariottini P
    Eur J Biochem; 2001 Jul; 268(13):3816-30. PubMed ID: 11432750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing mammalian spermine oxidase enzyme-substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization.
    Tavladoraki P; Cervelli M; Antonangeli F; Minervini G; Stano P; Federico R; Mariottini P; Polticelli F
    Amino Acids; 2011 Apr; 40(4):1115-26. PubMed ID: 20839014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.