These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
708 related articles for article (PubMed ID: 28516983)
1. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Dai Y; Xu C; Sun X; Chen X Chem Soc Rev; 2017 Jun; 46(12):3830-3852. PubMed ID: 28516983 [TBL] [Abstract][Full Text] [Related]
2. Emerging strategies against tumor-associated fibroblast for improved the penetration of nanoparticle into desmoplastic tumor. Yunna C; Mengru H; Fengling W; Lei W; Weidong C Eur J Pharm Biopharm; 2021 Aug; 165():75-83. PubMed ID: 33991610 [TBL] [Abstract][Full Text] [Related]
3. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. Sun H; Li X; Liu Q; Sheng H; Zhu L J Drug Target; 2024 Jul; 32(6):672-706. PubMed ID: 38682299 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic nanoparticles delivered hedgehog pathway inhibitor to modify tumour microenvironment and improved chemotherapy for pancreatic carcinoma. Jiang T; Zhang B; Zhang L; Wu X; Li H; Shen S; Luo Z; Liu X; Hu Y; Pang Z; Jiang X Artif Cells Nanomed Biotechnol; 2018; 46(sup1):1088-1101. PubMed ID: 29484905 [TBL] [Abstract][Full Text] [Related]
5. Remodeling the Tumor Microenvironment with Emerging Nanotherapeutics. Chen Q; Liu G; Liu S; Su H; Wang Y; Li J; Luo C Trends Pharmacol Sci; 2018 Jan; 39(1):59-74. PubMed ID: 29153879 [TBL] [Abstract][Full Text] [Related]
6. Smart Nanoplatforms Responding to the Tumor Microenvironment for Precise Drug Delivery in Cancer Therapy. Wang Y; Deng T; Liu X; Fang X; Mo Y; Xie N; Nie G; Zhang B; Fan X Int J Nanomedicine; 2024; 19():6253-6277. PubMed ID: 38911497 [TBL] [Abstract][Full Text] [Related]
7. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. Attia MF; Anton N; Wallyn J; Omran Z; Vandamme TF J Pharm Pharmacol; 2019 Aug; 71(8):1185-1198. PubMed ID: 31049986 [TBL] [Abstract][Full Text] [Related]
8. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. Ovais M; Mukherjee S; Pramanik A; Das D; Mukherjee A; Raza A; Chen C Adv Mater; 2020 Jun; 32(22):e2000055. PubMed ID: 32227413 [TBL] [Abstract][Full Text] [Related]
9. Preparation and evaluation of tumour microenvironment response multistage nanoparticles for epirubicin delivery and deep tumour penetration. Dai J; Han S; Ju F; Han M; Xu L; Zhang R; Sun Y Artif Cells Nanomed Biotechnol; 2018; 46(sup2):860-873. PubMed ID: 29771149 [TBL] [Abstract][Full Text] [Related]
10. Tumor microenvironment-specific nanoparticles activatable by stepwise transformation. Ko H; Son S; Jeon J; Thambi T; Kwon S; Chae YS; Kang YM; Park JH J Control Release; 2016 Jul; 234():68-78. PubMed ID: 27164544 [TBL] [Abstract][Full Text] [Related]
11. pH-Responsive dopamine-based nanoparticles assembled via Schiff base bonds for synergistic anticancer therapy. Li H; Zhao Y; Jia Y; Chen G; Peng J; Li J Chem Commun (Camb); 2020 Nov; 56(87):13347-13350. PubMed ID: 33026368 [TBL] [Abstract][Full Text] [Related]
12. Tumor-Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. Ryu JH; Yoon HY; Sun IC; Kwon IC; Kim K Adv Mater; 2020 Dec; 32(51):e2002197. PubMed ID: 33051905 [TBL] [Abstract][Full Text] [Related]
13. Recent progress in lactate oxidase-based drug delivery systems for enhanced cancer therapy. Li L; Yue T; Feng J; Zhang Y; Hou J; Wang Y Nanoscale; 2024 May; 16(18):8739-8758. PubMed ID: 38602362 [TBL] [Abstract][Full Text] [Related]
14. Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer. Wu D; Zhu ZQ; Tang HX; Shi ZE; Kang J; Liu Q; Qi J Theranostics; 2020; 10(21):9808-9829. PubMed ID: 32863961 [No Abstract] [Full Text] [Related]
15. Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery. Amreddy N; Babu A; Muralidharan R; Panneerselvam J; Srivastava A; Ahmed R; Mehta M; Munshi A; Ramesh R Adv Cancer Res; 2018; 137():115-170. PubMed ID: 29405974 [TBL] [Abstract][Full Text] [Related]
16. Quantitative imaging of intracellular nanoparticle exposure enables prediction of nanotherapeutic efficacy. Yin Q; Pan A; Chen B; Wang Z; Tang M; Yan Y; Wang Y; Xia H; Chen W; Du H; Chen M; Fu C; Wang Y; Yuan X; Lu Z; Zhang Q; Wang Y Nat Commun; 2021 Apr; 12(1):2385. PubMed ID: 33888701 [TBL] [Abstract][Full Text] [Related]
17. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. El-Sawy HS; Al-Abd AM; Ahmed TA; El-Say KM; Torchilin VP ACS Nano; 2018 Nov; 12(11):10636-10664. PubMed ID: 30335963 [TBL] [Abstract][Full Text] [Related]
18. Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Yang Y; Wu H; Liu B; Liu Z Adv Drug Deliv Rev; 2021 Dec; 179():114004. PubMed ID: 34662672 [TBL] [Abstract][Full Text] [Related]
19. Nanomedicine and chemotherapeutics drug delivery: challenges and opportunities. Nezhadi S; Saadat E; Handali S; Dorkoosh F J Drug Target; 2021 Feb; 29(2):185-198. PubMed ID: 32772739 [TBL] [Abstract][Full Text] [Related]
20. Improved Targeting of Cancers with Nanotherapeutics. Foster C; Watson A; Kaplinsky J; Kamaly N Methods Mol Biol; 2017; 1530():13-37. PubMed ID: 28150194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]