These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28516997)

  • 1. Peptide and antibody ligands for renal targeting: nanomedicine strategies for kidney disease.
    Wang J; Masehi-Lano JJ; Chung EJ
    Biomater Sci; 2017 Jul; 5(8):1450-1459. PubMed ID: 28516997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting strategies for drug delivery to the kidney: From renal glomeruli to tubules.
    Liu CP; Hu Y; Lin JC; Fu HL; Lim LY; Yuan ZX
    Med Res Rev; 2019 Mar; 39(2):561-578. PubMed ID: 30136283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving kidney targeting: The influence of nanoparticle physicochemical properties on kidney interactions.
    Huang Y; Wang J; Jiang K; Chung EJ
    J Control Release; 2021 Jun; 334():127-137. PubMed ID: 33892054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomedicines for renal disease: current status and future applications.
    Kamaly N; He JC; Ausiello DA; Farokhzad OC
    Nat Rev Nephrol; 2016 Dec; 12(12):738-753. PubMed ID: 27795549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomedical Applications of a Novel Class of High-Affinity Peptides.
    Saw PE; Xu X; Kim S; Jon S
    Acc Chem Res; 2021 Sep; 54(18):3576-3592. PubMed ID: 34406761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative review of nanotechnology-based therapeutics for kidney diseases.
    Cheng HT; Ngoc Ta YN; Hsia T; Chen Y
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(2):e1953. PubMed ID: 38500369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Application of Nanoparticles in Diagnosis and Treatment of Kidney Diseases.
    Paluszkiewicz P; Martuszewski A; Zaręba N; Wala K; Banasik M; Kepinska M
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of cause of failure of new targeting peptide in PEGylated liposome: molecular modeling as rational design tool for nanomedicine.
    Lehtinen J; Magarkar A; Stepniewski M; Hakola S; Bergman M; Róg T; Yliperttula M; Urtti A; Bunker A
    Eur J Pharm Sci; 2012 Jun; 46(3):121-30. PubMed ID: 22381076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spotlight on Genetic Kidney Diseases: A Call for Drug Delivery and Nanomedicine Solutions.
    Trac N; Ashraf A; Giblin J; Prakash S; Mitragotri S; Chung EJ
    ACS Nano; 2023 Apr; 17(7):6165-6177. PubMed ID: 36988207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heteromultivalent ligand-decoration for actively targeted nanomedicine.
    Modery-Pawlowski CL; Gupta AS
    Biomaterials; 2014 Mar; 35(9):2568-79. PubMed ID: 24411677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological principles underlying the kidney targeting of renal nanomedicines.
    Huang Y; Ning X; Ahrari S; Cai Q; Rajora N; Saxena R; Yu M; Zheng J
    Nat Rev Nephrol; 2024 Jun; 20(6):354-370. PubMed ID: 38409369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting the Kidneys at the Nanoscale: Nanotechnology in Nephrology.
    Vasylaki A; Ghosh P; Jaimes EA; Williams RM
    Kidney360; 2024 Apr; 5(4):618-630. PubMed ID: 38414130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptides and metallic nanoparticles for biomedical applications.
    Kogan MJ; Olmedo I; Hosta L; Guerrero AR; Cruz LJ; Albericio F
    Nanomedicine (Lond); 2007 Jun; 2(3):287-306. PubMed ID: 17716175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blocking peptides and molecular mimicry as treatment for kidney disease.
    Havasi A; Lu W; Cohen HT; Beck L; Wang Z; Igwebuike C; Borkan SC
    Am J Physiol Renal Physiol; 2017 Jun; 312(6):F1016-F1025. PubMed ID: 27654896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions.
    Broda E; Mickler FM; Lächelt U; Morys S; Wagner E; Bräuchle C
    J Control Release; 2015 Sep; 213():79-85. PubMed ID: 26134072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide ligand-mediated targeted drug delivery of nanomedicines.
    Jiang Z; Guan J; Qian J; Zhan C
    Biomater Sci; 2019 Jan; 7(2):461-471. PubMed ID: 30656305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo architectonic stability of fully de novo designed protein-only nanoparticles.
    Céspedes MV; Unzueta U; Tatkiewicz W; Sánchez-Chardi A; Conchillo-Solé O; Álamo P; Xu Z; Casanova I; Corchero JL; Pesarrodona M; Cedano J; Daura X; Ratera I; Veciana J; Ferrer-Miralles N; Vazquez E; Villaverde A; Mangues R
    ACS Nano; 2014 May; 8(5):4166-76. PubMed ID: 24708510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method of ligand peptidomics to identify peptide ligands binding to AQP2-expressing plasma membranes and intracellular vesicles of rat kidney.
    Lee YJ; Choi HJ; Lim JS; Earm JH; Lee BH; Kim IS; Frøkiaer J; Nielsen S; Kwon TH
    Am J Physiol Renal Physiol; 2008 Jul; 295(1):F300-9. PubMed ID: 18480184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting nanoparticles to cancer.
    Wang M; Thanou M
    Pharmacol Res; 2010 Aug; 62(2):90-9. PubMed ID: 20380880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavior of ligand binding assays with crowded surfaces: Molecular model of antigen capture by antibody-conjugated nanoparticles.
    Malaspina DC; Longo G; Szleifer I
    PLoS One; 2017; 12(9):e0185518. PubMed ID: 28957393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.