These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28516997)

  • 21. Nanomedicine approaches in acute lymphoblastic leukemia.
    Tatar AS; Nagy-Simon T; Tomuleasa C; Boca S; Astilean S
    J Control Release; 2016 Sep; 238():123-138. PubMed ID: 27460684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted nanoscale magnetic hyperthermia: challenges and potentials of peptide-based targeting.
    Fourmy D; Carrey J; Gigoux V
    Nanomedicine (Lond); 2015; 10(6):893-6. PubMed ID: 25867854
    [No Abstract]   [Full Text] [Related]  

  • 23. Ultrasmall polymeric nanocarriers for drug delivery to podocytes in kidney glomerulus.
    Bruni R; Possenti P; Bordignon C; Li M; Ordanini S; Messa P; Rastaldi MP; Cellesi F
    J Control Release; 2017 Jun; 255():94-107. PubMed ID: 28395969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and evaluation of peptidic ligands targeting tumour-associated urokinase plasminogen activator receptor (uPAR) for use in alpha-emitter therapy for disseminated ovarian cancer.
    Knör S; Sato S; Huber T; Morgenstern A; Bruchertseifer F; Schmitt M; Kessler H; Senekowitsch-Schmidtke R; Magdolen V; Seidl C
    Eur J Nucl Med Mol Imaging; 2008 Jan; 35(1):53-64. PubMed ID: 17891393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Delta-like ligand 4-targeted nanomedicine for antiangiogenic cancer therapy.
    Liu YR; Guan YY; Luan X; Lu Q; Wang C; Liu HJ; Gao YG; Yang SC; Dong X; Chen HZ; Fang C
    Biomaterials; 2015 Feb; 42():161-71. PubMed ID: 25542804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise.
    Bharali DJ; Mousa SA
    Pharmacol Ther; 2010 Nov; 128(2):324-35. PubMed ID: 20705093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein and peptide-based renal targeted drug delivery systems.
    Lu J; Xu X; Sun X; Du Y
    J Control Release; 2024 Feb; 366():65-84. PubMed ID: 38145662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HDL-mimicking peptide-lipid nanoparticles with improved tumor targeting.
    Zhang Z; Chen J; Ding L; Jin H; Lovell JF; Corbin IR; Cao W; Lo PC; Yang M; Tsao MS; Luo Q; Zheng G
    Small; 2010 Feb; 6(3):430-7. PubMed ID: 19957284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elastin-like polypeptide based nanoparticles: design rationale toward nanomedicine.
    Smits FC; Buddingh BC; van Eldijk MB; van Hest JC
    Macromol Biosci; 2015 Jan; 15(1):36-51. PubMed ID: 25407963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status.
    van der Meel R; Vehmeijer LJ; Kok RJ; Storm G; van Gaal EV
    Adv Drug Deliv Rev; 2013 Oct; 65(10):1284-98. PubMed ID: 24018362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances and advantages of nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer.
    Skandalis SS; Gialeli C; Theocharis AD; Karamanos NK
    Adv Cancer Res; 2014; 123():277-317. PubMed ID: 25081534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring.
    Namiki Y; Fuchigami T; Tada N; Kawamura R; Matsunuma S; Kitamoto Y; Nakagawa M
    Acc Chem Res; 2011 Oct; 44(10):1080-93. PubMed ID: 21786832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation.
    Shi J; Xiao Z; Kamaly N; Farokhzad OC
    Acc Chem Res; 2011 Oct; 44(10):1123-34. PubMed ID: 21692448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current Drug Nano-targeting Strategies for Improvement in the Diagnosis and Treatment of Prevalent Pathologies such as Cardiovascular and Renal Diseases.
    Giménez VMM; Fuentes LB; Kassuha DE; Manucha W
    Curr Drug Targets; 2019; 20(14):1496-1504. PubMed ID: 31267869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The potential of RNA-based therapy for kidney diseases.
    Bondue T; van den Heuvel L; Levtchenko E; Brock R
    Pediatr Nephrol; 2023 Feb; 38(2):327-344. PubMed ID: 35507149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Nanotechnology and Their Perspectives in the Treatment of Kidney Diseases.
    Merlin JPJ; Li X
    Front Genet; 2021; 12():817974. PubMed ID: 35069707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention.
    Vegt E; de Jong M; Wetzels JF; Masereeuw R; Melis M; Oyen WJ; Gotthardt M; Boerman OC
    J Nucl Med; 2010 Jul; 51(7):1049-58. PubMed ID: 20554737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of gentamicin binding to rat renal brush-border membrane by megalin ligands and basic peptides.
    Nagai J; Saito M; Adachi Y; Yumoto R; Takano M
    J Control Release; 2006 May; 112(1):43-50. PubMed ID: 16488503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of size, charge, and peptide ligand length on kidney targeting by small, organic nanoparticles.
    Huang Y; Jiang K; Zhang X; Chung EJ
    Bioeng Transl Med; 2020 Sep; 5(3):e10173. PubMed ID: 33005739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Present and future drug treatments for chronic kidney diseases: evolving targets in renoprotection.
    Perico N; Benigni A; Remuzzi G
    Nat Rev Drug Discov; 2008 Nov; 7(11):936-53. PubMed ID: 18846102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.