BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28517151)

  • 1. SU-E-T-112: Experimental Characterization of a Novel Thermal Reservoir for Consistent and Accurate Annealing of High-Sensitivity TLDs.
    Donahue W; Bongiorni P; Hearn R; Rodgers J; Nath R; Chen Z
    Med Phys; 2012 Jun; 39(6Part11):3728-3729. PubMed ID: 28517151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SU-E-T-92: on the Use of High-Sensitivity Thermoluminescent Dosimeters (TLDs) for Dosimetric Characterization of Low-Energy Brachytherapy Sources.
    Chen Z; Bongiorni P; Donahue W; Hearn R; Rodgers J; Nath R
    Med Phys; 2012 Jun; 39(6Part11):3723. PubMed ID: 28517162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instrumentation and dosimeter-size artifacts in quantitative thermoluminescence dosimetry of low-dose fields.
    Meigooni AS; Mishra V; Panth H; Williamson J
    Med Phys; 1995 May; 22(5):555-61. PubMed ID: 7643791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity loss of Lif:Mg,Cu,P thermoluminescence dosemeters caused by oven annealing.
    Lüpke M; Goblet F; Polivka B; Seifert H
    Radiat Prot Dosimetry; 2006; 121(2):195-201. PubMed ID: 16464837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).
    Tedgren AC; Hedman A; Grindborg JE; Carlsson GA
    Med Phys; 2011 Oct; 38(10):5539-50. PubMed ID: 21992372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source.
    Lucas PA; Aubineau-Lanièce I; Lourenço V; Vermesse D; Cutarella D
    Med Phys; 2014 Jan; 41(1):011711. PubMed ID: 24387503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SU-E-T-303: Practical Considerations for Maximizing Heat Production in Novel Thermo-Brachytherapy Seed Prototype.
    Gautam B; Shvydka D; Parsai E
    Med Phys; 2012 Jun; 39(6Part14):3773. PubMed ID: 28517278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for 125I and 103Pd brachytherapy sources relative to 60Co.
    Reed JL; Rasmussen BE; Davis SD; Micka JA; Culberson WS; DeWerd LA
    Med Phys; 2014 Dec; 41(12):122103. PubMed ID: 25471976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20-250 kVp relative to 60Co.
    Nunn AA; Davis SD; Micka JA; DeWerd LA
    Med Phys; 2008 May; 35(5):1859-69. PubMed ID: 18561661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal neutron fluence measurement in a research reactor using thermoluminescence dosimeter TLD-600.
    Torkzadeh F; Manouchehri F
    J Radiol Prot; 2006 Mar; 26(1):97-103. PubMed ID: 16522947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TLD dose measurement: a simplified accurate technique for the dose range from 0.5 cGy to 1000 cGy.
    Yu C; Luxton G
    Med Phys; 1999 Jun; 26(6):1010-6. PubMed ID: 10436903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosimetry in an IMRT phantom designed for a remote monitoring program.
    Han Y; Shin EH; Lim C; Kang SK; Park SH; Lah JE; Suh TS; Yoon M; Lee SB; Cho SH; Ibbott GS; Ju SG; Ahn YC
    Med Phys; 2008 Jun; 35(6):2519-27. PubMed ID: 18649485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoluminescence dosimetry of a thermal neutron field and comparison with Monte Carlo calculations.
    Fernandes AC; Santos JP; Kling A; Marques JG; Gonçalves IC; Carvalho AF; Santos L; Cardoso J; Osvay M
    Radiat Prot Dosimetry; 2004; 111(1):35-9. PubMed ID: 15367765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of skin dose estimation between thermoluminescent dosimeter and treatment planning system in prostatic cancer: A brachytherapy technique.
    Majdaeen M; Refahi S; Banaei A; Ghadimi M; Ardekani MA; Goushbolagh NA; Zamani H
    J Clin Transl Res; 2021 Feb; 7(1):77-83. PubMed ID: 34027203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Properties, effectiveness and thermal processing of thermoluminescent dosimetry material].
    Regulla DF
    Strahlentherapie; 1985 Feb; 161(2):82-3. PubMed ID: 3975942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of absorbed dose to water around a clinical HDR (192)Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response.
    Carlsson Tedgren A; Elia R; Hedtjarn H; Olsson S; Alm Carlsson G
    Med Phys; 2012 Feb; 39(2):1133-40. PubMed ID: 22320824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LOSS OF TLD SIGNAL DUE TO HIGH TEMPERATURE ENVIRONMENTAL CONDITIONS.
    Villanueva A; Goddard B
    Radiat Prot Dosimetry; 2019 Dec; 187(1):17-20. PubMed ID: 31204777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical use of carbon-loaded thermoluminescent dosimeters for skin dose determination.
    Ostwald PM; Kron T; Hamilton CS; Denham JW
    Int J Radiat Oncol Biol Phys; 1995 Nov; 33(4):943-50. PubMed ID: 7591907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LiF and CaF2: Dy thermoluminescent dosimeters.
    Tsuda M; Ohizumi Y; Mori T
    Strahlentherapie; 1980; 156(10):708-13. PubMed ID: 7434378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The application of non-annealing thermoluminescent dosimetry (TLD)].
    Wu JM; Chen CS; Lan RH
    Changgeng Yi Xue Za Zhi; 1993 Jun; 16(2):111-9. PubMed ID: 8339153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.