BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28517278)

  • 1. SU-E-T-303: Practical Considerations for Maximizing Heat Production in Novel Thermo-Brachytherapy Seed Prototype.
    Gautam B; Shvydka D; Parsai E
    Med Phys; 2012 Jun; 39(6Part14):3773. PubMed ID: 28517278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical considerations for maximizing heat production in a novel thermobrachytherapy seed prototype.
    Gautam B; Warrell G; Shvydka D; Subramanian M; Ishmael Parsai E
    Med Phys; 2014 Feb; 41(2):023301. PubMed ID: 24506651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetric and thermal properties of a newly developed thermobrachytherapy seed with ferromagnetic core for treatment of solid tumors.
    Gautam B; Parsai EI; Shvydka D; Feldmeier J; Subramanian M
    Med Phys; 2012 Apr; 39(4):1980-90. PubMed ID: 22482619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization and experimental characterization of the innovative thermo-brachytherapy seed for prostate cancer treatment.
    Taghizadeh S; Shvydka D; Shan A; Mian OY; Parsai EI
    Med Phys; 2024 Feb; 51(2):839-853. PubMed ID: 38159297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of novel thermobrachytherapy seeds for realistic prostate seed implant treatments.
    Warrell G; Shvydka D; Parsai EI
    Med Phys; 2016 Nov; 43(11):6033. PubMed ID: 27806619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of thermal treatment on heating characteristics of Ni-Cu alloy for hyperthermia: preliminary studies.
    Ferguson SD; Paulus JA; Tucker RD; Loening SA; Park JB
    J Appl Biomater; 1993; 4(1):55-60. PubMed ID: 10148346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Thermal Properties of Ferromagnetic Core for Treatment of Solid Tumors by Electromagnetic Induction Hyperthermia.
    Mohagheghpour E; Sheibani S; Saber R; Soliemanpoor M; Sarkar S; Nezamdust A
    J Biomed Phys Eng; 2023 Dec; 13(6):543-554. PubMed ID: 38148962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SU-E-T-112: Experimental Characterization of a Novel Thermal Reservoir for Consistent and Accurate Annealing of High-Sensitivity TLDs.
    Donahue W; Bongiorni P; Hearn R; Rodgers J; Nath R; Chen Z
    Med Phys; 2012 Jun; 39(6Part11):3728-3729. PubMed ID: 28517151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ni-Cu Nanoparticles and Their Feasibility for Magnetic Hyperthermia.
    Meneses-Brassea BP; Borrego EA; Blazer DS; Sanad MF; Pourmiri S; Gutierrez DA; Varela-Ramirez A; Hadjipanayis GC; El-Gendy AA
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33050215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of heating power generated from ferromagnetic thermal seed (PdCo-PdNi-CuNi) alloys used as interstitial hyperthermia implants.
    El-Sayed AH; Aly AA; EI-Sayed NI; Mekawy MM; EI-Gendy AA
    J Mater Sci Mater Med; 2007 Mar; 18(3):523-8. PubMed ID: 17334704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferromagnetic self-regulating reheatable thermal rod implants for in situ tissue ablation.
    Rehman J; Landman J; Tucker RD; Bostwick DG; Sundaram CP; Clayman RV
    J Endourol; 2002 Sep; 16(7):523-31. PubMed ID: 12396447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of movable inductively heated seeds for the treatment of brain tumors.
    Molloy JA; Ritter RC; Broaddus WC; Grady MS; Howard MA; Quate EG; Gillies GT
    Med Phys; 1991; 18(4):794-803. PubMed ID: 1921889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal ablation of canine prostate using interstitial temperature self-regulating seeds: new treatment for prostate cancer.
    Paulus JA; Tucker RD; Loening SA; Flanagan SW
    J Endourol; 1997 Aug; 11(4):295-300. PubMed ID: 9376852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of heat treatment on the microstructure and properties of Ni based soft magnetic alloy.
    Li C; Ruan H; Chen D; Li K; Guo D; Shao B
    Microsc Res Tech; 2018 Jul; 81(7):796-802. PubMed ID: 29675858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ferrite core/metallic sheath thermoseed for interstitial thermal therapies.
    Cetas TC; Gross EJ; Contractor Y
    IEEE Trans Biomed Eng; 1998 Jan; 45(1):68-77. PubMed ID: 9444841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Cu Substitution and Heat Treatment on Phase Formation and Magnetic Properties of Sm
    Dai F; Liu P; Luo L; Chen D; Yao Q; Wang J
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of Temperature-Dependent Magnetic Properties and Coefficient of Thermal Expansion in Invar Alloys.
    Huang L; Zhou Y; Guo T; Han D; Gu Y; Song C; Pan F
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Ni-4 wt.% Si thermoseeds for hyperthermia cancer treatment.
    Chen JS; Poirier DR; Damento MA; Demer LJ; Biancaniello F; Cetas TC
    J Biomed Mater Res; 1988 Apr; 22(4):303-19. PubMed ID: 3372551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperthermia induction with thermally self-regulated ferromagnetic implants.
    Lilly MB; Brezovich IA; Atkinson WJ
    Radiology; 1985 Jan; 154(1):243-4. PubMed ID: 3964942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.