These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 28517316)

  • 1. SU-E-T-232: Proton Source Modeling for Geant4 Monte Carlo Simulations.
    Barnes S; McAuley G; Wroe A; Slater J
    Med Phys; 2012 Jun; 39(6Part13):3756-3757. PubMed ID: 28517316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical analysis of angular distribution of scattering in nozzle components using a response-function method for proton spot-scanning therapy.
    Ueda H; Furusaka M; Matsuura T; Hirayama S; Umegaki K
    Phys Med Biol; 2018 Jan; 63(3):035005. PubMed ID: 29235439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation.
    Faddegon BA; Shin J; Castenada CM; Ramos-Méndez J; Daftari IK
    Med Phys; 2015 Jul; 42(7):4199-210. PubMed ID: 26133619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation.
    O'Shea TP; Foley MJ; Faddegon BA
    Med Phys; 2011 Jun; 38(6):3260-9. PubMed ID: 21815400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SU-E-I-111: Evaluation of the Analytical Scattering Models of 1) Lynch-Dahl 2) Highland and 3) Rossi for Proton Beams and Comparison with GEANT4 Monte Carlo Simulations as a Prerequisite for Proton Radiography Applications for Patients.
    Raytchev M; Safai S; Seco J
    Med Phys; 2012 Jun; 39(6Part5):3650. PubMed ID: 28517669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility.
    Paganetti H; Jiang H; Lee SY; Kooy HM
    Med Phys; 2004 Jul; 31(7):2107-18. PubMed ID: 15305464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SU-E-T-474: Monte Carlo Phase Space Production to Model Magnetically Scanned Proton Beams for IMPT.
    Titt U; Mirkovic D; Perles L; Sell M; Peeler C; Liu A; Mohan R
    Med Phys; 2012 Jun; 39(6Part17):3814. PubMed ID: 28517438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oblique incidence for broad monoenergetic proton beams.
    Jette D; Yuan J; Chen W
    Med Phys; 2010 Nov; 37(11):5683-90. PubMed ID: 21158280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.
    Oborn BM; Dowdell S; Metcalfe PE; Crozier S; Mohan R; Keall PJ
    Med Phys; 2015 May; 42(5):2113-24. PubMed ID: 25979006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons.
    Peterson SW; Polf J; Bues M; Ciangaru G; Archambault L; Beddar S; Smith A
    Phys Med Biol; 2009 May; 54(10):3217-29. PubMed ID: 19420426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SU-E-T-478: Geometrical Splitting Technique to Improve the Computational Efficiency in Monte Carlo Calculations for Proton Therapy.
    Ramos-Mendez J; Perl J; Faddegon B; Paganetti H
    Med Phys; 2012 Jun; 39(6Part17):3815. PubMed ID: 28517444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental verification of dose calculation using the simplified Monte Carlo method with an improved initial beam model for a beam-wobbling system.
    Tansho R; Takada Y; Kohno R; Hotta K; Hara Y; Mizutani S; Akimoto T
    Phys Med Biol; 2013 Sep; 58(17):6047-64. PubMed ID: 23939011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4.
    Grevillot L; Bertrand D; Dessy F; Freud N; Sarrut D
    Phys Med Biol; 2011 Aug; 56(16):5203-19. PubMed ID: 21791731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental test of Monte Carlo proton transport at grazing incidence in GEANT4, FLUKA and MCNPX.
    Kimstrand P; Tilly N; Ahnesjö A; Traneus E
    Phys Med Biol; 2008 Feb; 53(4):1115-29. PubMed ID: 18263962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique.
    Hirayama S; Takayanagi T; Fujii Y; Fujimoto R; Fujitaka S; Umezawa M; Nagamine Y; Hosaka M; Yasui K; Omachi C; Toshito T
    Med Phys; 2016 Mar; 43(3):1437-50. PubMed ID: 26936728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SU-E-T-491: A FLUKA Monte Carlo Computational Model of a Scanning Proton Beam Therapy Nozzle at IU Proton Therapy Center.
    Moskvin V; Cheng C; Anferov V; Nichiporov D; Zhao Q; Takashina M; Parola R; Das I
    Med Phys; 2012 Jun; 39(6Part17):3818. PubMed ID: 28517449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SU-E-T-234: LET Measurement Using Nuclear Emulsion and Monte Carlo Simulation for Proton Beam.
    Shin J; Cho S; Park S; Lee S; Kwak J; Kim S; Morishima K
    Med Phys; 2012 Jun; 39(6Part13):3757. PubMed ID: 28517348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo linear accelerator simulation of megavoltage photon beams: independent determination of initial beam parameters.
    Almberg SS; Frengen J; Kylling A; Lindmo T
    Med Phys; 2012 Jan; 39(1):40-7. PubMed ID: 22225273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial beam size study for passive scatter proton therapy. II. Changes in delivered depth dose profiles.
    Polf JC; Harvey MC; Smith AR
    Med Phys; 2007 Nov; 34(11):4219-22. PubMed ID: 18072486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte carlo electron source model validation for an Elekta Precise linac.
    Ali OA; Willemse CA; Shaw W; O'Reilly FH; du Plessis FC
    Med Phys; 2011 May; 38(5):2366-73. PubMed ID: 21776771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.