These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28517449)

  • 1. SU-E-T-491: A FLUKA Monte Carlo Computational Model of a Scanning Proton Beam Therapy Nozzle at IU Proton Therapy Center.
    Moskvin V; Cheng C; Anferov V; Nichiporov D; Zhao Q; Takashina M; Parola R; Das I
    Med Phys; 2012 Jun; 39(6Part17):3818. PubMed ID: 28517449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility.
    Paganetti H; Jiang H; Lee SY; Kooy HM
    Med Phys; 2004 Jul; 31(7):2107-18. PubMed ID: 15305464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle.
    Sawakuchi GO; Mirkovic D; Perles LA; Sahoo N; Zhu XR; Ciangaru G; Suzuki K; Gillin MT; Mohan R; Titt U
    Med Phys; 2010 Sep; 37(9):4960-70. PubMed ID: 20964215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA.
    Lee C; Lee S; Lee SJ; Song H; Kim DH; Cho S; Jo K; Han Y; Chung YH; Kim JS
    PLoS One; 2017; 12(10):e0186544. PubMed ID: 29045491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial beam size study for passive scatter proton therapy. I. Monte Carlo verification.
    Polf JC; Harvey MC; Titt U; Newhauser WD; Smith AR
    Med Phys; 2007 Nov; 34(11):4213-8. PubMed ID: 18072485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons.
    Peterson SW; Polf J; Bues M; Ciangaru G; Archambault L; Beddar S; Smith A
    Phys Med Biol; 2009 May; 54(10):3217-29. PubMed ID: 19420426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo framework for commissioning a synchrotron-based discrete spot scanning proton beam system and treatment plan verification.
    Moskvin VP; Faught A; Pirlepesov F; Zhao L; Hua CH; Merchant TE
    Biomed Phys Eng Express; 2021 Jun; 7(4):. PubMed ID: 34077921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical Note: An approach to building a Monte Carlo simulation model for a double scattering proton beam system.
    Yuan J; Ellis R; Machtay M
    Med Phys; 2018 Jun; 45(6):2660-2666. PubMed ID: 29603753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams.
    Lourenço A; Thomas R; Bouchard H; Kacperek A; Vondracek V; Royle G; Palmans H
    Med Phys; 2016 Jul; 43(7):4122. PubMed ID: 27370132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations of a low energy proton beamline for radiobiological experiments.
    Dahle TJ; Rykkelid AM; Stokkevåg CH; Mairani A; Görgen A; Edin NJ; Rørvik E; Fjæra LF; Malinen E; Ytre-Hauge KS
    Acta Oncol; 2017 Jun; 56(6):779-786. PubMed ID: 28464743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations in proton scanned beam dose delivery due to uncertainties in magnetic beam steering.
    Peterson S; Polf J; Ciangaru G; Frank SJ; Bues M; Smith A
    Med Phys; 2009 Aug; 36(8):3693-702. PubMed ID: 19746802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technical Note: Defining cyclotron-based clinical scanning proton machines in a FLUKA Monte Carlo system.
    Fiorini F; Schreuder N; Van den Heuvel F
    Med Phys; 2018 Feb; 45(2):963-970. PubMed ID: 29178429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SU-E-T-478: Geometrical Splitting Technique to Improve the Computational Efficiency in Monte Carlo Calculations for Proton Therapy.
    Ramos-Mendez J; Perl J; Faddegon B; Paganetti H
    Med Phys; 2012 Jun; 39(6Part17):3815. PubMed ID: 28517444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SU-E-T-234: LET Measurement Using Nuclear Emulsion and Monte Carlo Simulation for Proton Beam.
    Shin J; Cho S; Park S; Lee S; Kwak J; Kim S; Morishima K
    Med Phys; 2012 Jun; 39(6Part13):3757. PubMed ID: 28517348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility studies of a passive scatter proton therapy nozzle without a range modulator wheel.
    Harvey MC; Polf JC; Smith AR; Mohan R
    Med Phys; 2008 Jun; 35(6):2243-52. PubMed ID: 18649454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions.
    Wan Chan Tseung H; Ma J; Beltran C
    Med Phys; 2015 Jun; 42(6):2967-78. PubMed ID: 26127050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SU-E-T-473: Performance Assessment of the TOPAS Tool for Particle Simulation for Proton Therapy Applications.
    Perl J; Shin J; Schuemann J; Faddegon B; Paganetti H
    Med Phys; 2012 Jun; 39(6Part17):3814. PubMed ID: 28517451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical note: Providing proton fields down to the few-MeV level at clinical pencil beam scanning facilities for radiobiological experiments.
    Behrends C; Bäumer C; Verbeek N; Ehlert J; Prasad R; Wulff J; Lühr A; Timmermann B
    Med Phys; 2022 Jan; 49(1):666-674. PubMed ID: 34855985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dosimetric Deviations of Bragg-Peak Position Shifts in Uniform Magnetic Fields for Magnetic Resonance Imaging-Guiding Proton Radiotherapy: A Monte Carlo Study.
    Wang X; Pan H; Cheng Q; Wang X; Xu W
    Front Public Health; 2021; 9():641915. PubMed ID: 34414150
    [No Abstract]   [Full Text] [Related]  

  • 20. Determination of the initial beam parameters in Monte Carlo linac simulation.
    Aljarrah K; Sharp GC; Neicu T; Jiang SB
    Med Phys; 2006 Apr; 33(4):850-8. PubMed ID: 16696460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.