These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28517937)

  • 1. Cellular Shuttles: Monocytes/Macrophages Exhibit Transendothelial Transport of Nanoparticles under Physiological Flow.
    Moore TL; Hauser D; Gruber T; Rothen-Rutishauser B; Lattuada M; Petri-Fink A; Lyck R
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18501-18511. PubMed ID: 28517937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles-Implication of macrophage-based drug delivery into the central nervous system.
    Tong HI; Kang W; Shi Y; Zhou G; Lu Y
    Int J Pharm; 2016 May; 505(1-2):271-82. PubMed ID: 27001531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorin Nanoparticles for Tissue Diagnostics and Photodynamic Therapy.
    Scalfi-Happ C; Zhu Z; Graefe S; Wiehe A; Ryabova A; Loschenov V; Wittig R; Steiner RW
    Photodiagnosis Photodyn Ther; 2018 Jun; 22():106-114. PubMed ID: 29567384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of shear flow on nanoparticle agglomeration and deposition in in vitro dynamic flow models.
    Grabinski C; Sharma M; Maurer E; Sulentic C; Mohan Sankaran R; Hussain S
    Nanotoxicology; 2016; 10(1):74-83. PubMed ID: 25961858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of biological fluid and dynamic flow in the behavior and cellular interactions of gold nanoparticles.
    Breitner EK; Hussain SM; Comfort KK
    J Nanobiotechnology; 2015 Sep; 13():56. PubMed ID: 26341004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic in vitro systems as well as in vivo.
    Rinkenauer AC; Press AT; Raasch M; Pietsch C; Schweizer S; Schwörer S; Rudolph KL; Mosig A; Bauer M; Traeger A; Schubert US
    J Control Release; 2015 Oct; 216():158-68. PubMed ID: 26277064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flow cytometric analysis of macrophage- nanoparticle interactions in vitro: induction of altered Toll-like receptor expression.
    Njoroge JM; Yourick JJ; Principato MA
    Int J Nanomedicine; 2018; 13():8365-8378. PubMed ID: 30587965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation.
    Suzuki Y; Tada-Oikawa S; Ichihara G; Yabata M; Izuoka K; Suzuki M; Sakai K; Ichihara S
    Toxicol Appl Pharmacol; 2014 Jul; 278(1):16-25. PubMed ID: 24746987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique size and shape-dependent uptake behaviors of non-spherical nanoparticles by endothelial cells due to a shearing flow.
    Jurney P; Agarwal R; Singh V; Choi D; Roy K; Sreenivasan SV; Shi L
    J Control Release; 2017 Jan; 245():170-176. PubMed ID: 27916535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodistribution of surfactant-free poly(lactic-acid) nanoparticles and uptake by endothelial cells and phagocytes in zebrafish: Evidence for endothelium to macrophage transfer.
    Rességuier J; Levraud JP; Dal NK; Fenaroli F; Primard C; Wohlmann J; Carron G; Griffiths GW; Le Guellec D; Verrier B
    J Control Release; 2021 Mar; 331():228-245. PubMed ID: 33444668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages.
    Wagner AJ; Bleckmann CA; Murdock RC; Schrand AM; Schlager JJ; Hussain SM
    J Phys Chem B; 2007 Jun; 111(25):7353-9. PubMed ID: 17547441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catastrophic inflammatory death of monocytes and macrophages by overtaking of a critical dose of endocytosed synthetic amorphous silica nanoparticles/serum protein complexes.
    Fedeli C; Selvestrel F; Tavano R; Segat D; Mancin F; Papini E
    Nanomedicine (Lond); 2013 Jul; 8(7):1101-26. PubMed ID: 23237027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle Properties Influence Transendothelial Migration of Monocytes.
    Habibi N; Brown TD; Adu-Berchie K; Christau S; Raymond JE; Mooney DJ; Mitragotri S; Lahann J
    Langmuir; 2022 May; 38(18):5603-5616. PubMed ID: 35446569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles.
    Xin H; Sha X; Jiang X; Chen L; Law K; Gu J; Chen Y; Wang X; Fang X
    Biomaterials; 2012 Feb; 33(5):1673-81. PubMed ID: 22133551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles.
    Greulich C; Diendorf J; Gessmann J; Simon T; Habijan T; Eggeler G; Schildhauer TA; Epple M; Köller M
    Acta Biomater; 2011 Sep; 7(9):3505-14. PubMed ID: 21651999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells.
    Baghirov H; Melikishvili S; Mørch Y; Sulheim E; Åslund AKO; Hianik T; de Lange Davies C
    Colloids Surf B Biointerfaces; 2017 Feb; 150():373-383. PubMed ID: 27842930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The delivered dose: Applying particokinetics to in vitro investigations of nanoparticle internalization by macrophages.
    Ahmad Khanbeigi R; Kumar A; Sadouki F; Lorenz C; Forbes B; Dailey LA; Collins H
    J Control Release; 2012 Sep; 162(2):259-66. PubMed ID: 22824784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake of ferromagnetic carbon-encapsulated metal nanoparticles in endothelial cells: influence of shear stress and endothelial activation.
    Jacobson M; Roth Z'graggen B; Graber SM; Schumacher CM; Stark WJ; Dumrese C; Mateos JM; Aemisegger C; Ziegler U; Urner M; Herrmann IK; Beck-Schimmer B
    Nanomedicine (Lond); 2015; 10(24):3537-46. PubMed ID: 26434758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution.
    Dobrovolskaia MA; Aggarwal P; Hall JB; McNeil SE
    Mol Pharm; 2008; 5(4):487-95. PubMed ID: 18510338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors.
    Choi MR; Stanton-Maxey KJ; Stanley JK; Levin CS; Bardhan R; Akin D; Badve S; Sturgis J; Robinson JP; Bashir R; Halas NJ; Clare SE
    Nano Lett; 2007 Dec; 7(12):3759-65. PubMed ID: 17979310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.