These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 28518000)
41. Numerical Simulation of Mass Transfer and Three-Dimensional Fabrication of Tissue-Engineered Cartilages Based on Chitosan/Gelatin Hybrid Hydrogel Scaffold in a Rotating Bioreactor. Zhu Y; Song K; Jiang S; Chen J; Tang L; Li S; Fan J; Wang Y; Zhao J; Liu T Appl Biochem Biotechnol; 2017 Jan; 181(1):250-266. PubMed ID: 27526111 [TBL] [Abstract][Full Text] [Related]
42. Rhythmicity of engraftment and altered cell cycle kinetics of cytokine-cultured murine marrow in simulated microgravity compared with static cultures. Colvin GA; Lambert JF; Carlson JE; McAuliffe CI; Abedi M; Quesenberry PJ In Vitro Cell Dev Biol Anim; 2002 Jun; 38(6):343-51. PubMed ID: 12513122 [TBL] [Abstract][Full Text] [Related]
43. Dynamic compression of rabbit adipose-derived stem cells transfected with insulin-like growth factor 1 in chitosan/gelatin scaffolds induces chondrogenesis and matrix biosynthesis. Li J; Zhao Q; Wang E; Zhang C; Wang G; Yuan Q J Cell Physiol; 2012 May; 227(5):2003-12. PubMed ID: 21751209 [TBL] [Abstract][Full Text] [Related]
44. Human elastic cartilage engineering from cartilage progenitor cells using rotating wall vessel bioreactor. Takebe T; Kobayashi S; Kan H; Suzuki H; Yabuki Y; Mizuno M; Adegawa T; Yoshioka T; Tanaka J; Maegawa J; Taniguchi H Transplant Proc; 2012 May; 44(4):1158-61. PubMed ID: 22564652 [TBL] [Abstract][Full Text] [Related]
45. Dynamic hydrostatic pressure enhances differentially the chondrogenesis of meniscal cells from the inner and outer zone. Zellner J; Mueller M; Xin Y; Krutsch W; Brandl A; Kujat R; Nerlich M; Angele P J Biomech; 2015 Jun; 48(8):1479-84. PubMed ID: 25698240 [TBL] [Abstract][Full Text] [Related]
46. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells. Luo L; Thorpe SD; Buckley CT; Kelly DJ Biomed Mater; 2015 Sep; 10(5):055011. PubMed ID: 26391756 [TBL] [Abstract][Full Text] [Related]
47. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Pelaez D; Huang CY; Cheung HS Stem Cells Dev; 2009; 18(1):93-102. PubMed ID: 18399763 [TBL] [Abstract][Full Text] [Related]
48. Improving chondrogenesis: potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering. Kupcsik L; Stoddart MJ; Li Z; Benneker LM; Alini M Tissue Eng Part A; 2010 Jun; 16(6):1845-55. PubMed ID: 20067399 [TBL] [Abstract][Full Text] [Related]
49. Scalable Microgravity Simulator Used for Long-Term Musculoskeletal Cells and Tissue Engineering. Cazzaniga A; Ille F; Wuest S; Haack C; Koller A; Giger-Lange C; Zocchi M; Egli M; Castiglioni S; Maier JA Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255352 [TBL] [Abstract][Full Text] [Related]
50. [Chondrogenesis of adipose derived stem cells induced by misshapen auricular chondrocytes from microtia in vitro]. Cai Z; Pan B; Lin L; Jiang H; Zhuang H; You X; Fu R Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jan; 27(1):83-8. PubMed ID: 23427500 [TBL] [Abstract][Full Text] [Related]
51. Mechanobiological conditioning of stem cells for cartilage tissue engineering. Schumann D; Kujat R; Nerlich M; Angele P Biomed Mater Eng; 2006; 16(4 Suppl):S37-52. PubMed ID: 16823112 [TBL] [Abstract][Full Text] [Related]
52. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Schulz RM; Bader A Eur Biophys J; 2007 Apr; 36(4-5):539-68. PubMed ID: 17318529 [TBL] [Abstract][Full Text] [Related]
53. Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage. Sakai S; Mishima H; Ishii T; Akaogi H; Yoshioka T; Ohyabu Y; Chang F; Ochiai N; Uemura T J Orthop Res; 2009 Apr; 27(4):517-21. PubMed ID: 18932231 [TBL] [Abstract][Full Text] [Related]
54. [Research progress of bioreactor biophysical factors in cartilage tissue engineering]. Ye G; Zhang F; Shi H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):810-3. PubMed ID: 24063168 [TBL] [Abstract][Full Text] [Related]
55. Effect of chondrocyte-derived early extracellular matrix on chondrogenesis of placenta-derived mesenchymal stem cells. Park YB; Seo S; Kim JA; Heo JC; Lim YC; Ha CW Biomed Mater; 2015 Jun; 10(3):035014. PubMed ID: 26107298 [TBL] [Abstract][Full Text] [Related]
56. Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Mahmoudifar N; Doran PM Biomaterials; 2010 May; 31(14):3858-67. PubMed ID: 20153043 [TBL] [Abstract][Full Text] [Related]
57. Hydrostatic pressure promotes chondrogenic differentiation and microvesicle release from human embryonic and bone marrow stem cells. Luo L; Foster NC; Man KL; Brunet M; Hoey DA; Cox SC; Kimber SJ; El Haj AJ Biotechnol J; 2022 Apr; 17(4):e2100401. PubMed ID: 34921593 [TBL] [Abstract][Full Text] [Related]
58. Hypoxia enhances chondrogenic differentiation of human adipose tissue-derived stromal cells in scaffold-free and scaffold systems. Munir S; Foldager CB; Lind M; Zachar V; Søballe K; Koch TG Cell Tissue Res; 2014 Jan; 355(1):89-102. PubMed ID: 24178804 [TBL] [Abstract][Full Text] [Related]
59. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration. Blaber EA; Dvorochkin N; Torres ML; Yousuf R; Burns BP; Globus RK; Almeida EA Stem Cell Res; 2014 Sep; 13(2):181-201. PubMed ID: 25011075 [TBL] [Abstract][Full Text] [Related]
60. Neocartilage formation in 1 g, simulated, and microgravity environments: implications for tissue engineering. Stamenković V; Keller G; Nesic D; Cogoli A; Grogan SP Tissue Eng Part A; 2010 May; 16(5):1729-36. PubMed ID: 20141387 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]