BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28518098)

  • 1. Engineering Artificial Factors to Specifically Manipulate Alternative Splicing in Human Cells.
    Wei HH; Liu Y; Wang Y; Lu Q; Yang X; Li J; Wang Z
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28518098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of RNA-Binding Proteins: Manipulate Alternative Splicing in Human Cells with Artificial Splicing Factors.
    Wang Y; Wang Z
    Methods Mol Biol; 2016; 1421():227-41. PubMed ID: 26965269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding RNA binding specificity and affinity of engineered PUF domains.
    Zhao YY; Mao MW; Zhang WJ; Wang J; Li HT; Yang Y; Wang Z; Wu JW
    Nucleic Acids Res; 2018 May; 46(9):4771-4782. PubMed ID: 29490074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific and modular binding code for cytosine recognition in Pumilio/FBF (PUF) RNA-binding domains.
    Dong S; Wang Y; Cassidy-Amstutz C; Lu G; Bigler R; Jezyk MR; Li C; Hall TM; Wang Z
    J Biol Chem; 2011 Jul; 286(30):26732-42. PubMed ID: 21653694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering splicing factors with designed specificities.
    Wang Y; Cheong CG; Hall TM; Wang Z
    Nat Methods; 2009 Nov; 6(11):825-30. PubMed ID: 19801992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered proteins with Pumilio/fem-3 mRNA binding factor scaffold to manipulate RNA metabolism.
    Wang Y; Wang Z; Tanaka Hall TM
    FEBS J; 2013 Aug; 280(16):3755-67. PubMed ID: 23731364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of RNA using engineered proteins with customized specificity.
    Choudhury R; Wang Z
    Adv Exp Med Biol; 2014; 825():199-225. PubMed ID: 25201107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ExonSuite: algorithmically optimizing alternative gene splicing for the PUF proteins.
    Ustek D; Kohrman A; Krstic B; Fernandez K
    Comput Biol Med; 2013 Sep; 43(8):1023-4. PubMed ID: 23816174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering circular RNA regulators to specifically promote circular RNA production.
    Qi Y; Han W; Chen D; Zhao J; Bai L; Huang F; Dai Z; Li G; Chen C; Zhang W; Zhang J; Jin B; Wang Y
    Theranostics; 2021; 11(15):7322-7336. PubMed ID: 34158853
    [No Abstract]   [Full Text] [Related]  

  • 10. Nested PUF Proteins: Extending Target RNA Elements for Gene Regulation.
    Shinoda K; Tsuji S; Futaki S; Imanishi M
    Chembiochem; 2018 Jan; 19(2):171-176. PubMed ID: 29110405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering reprogrammable RNA-binding proteins for study and manipulation of the transcriptome.
    Abil Z; Zhao H
    Mol Biosyst; 2015 Oct; 11(10):2658-65. PubMed ID: 26166256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target selection by natural and redesigned PUF proteins.
    Porter DF; Koh YY; VanVeller B; Raines RT; Wickens M
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15868-73. PubMed ID: 26668354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular assembly of designer PUF proteins for specific post-transcriptional regulation of endogenous RNA.
    Abil Z; Denard CA; Zhao H
    J Biol Eng; 2014 Mar; 8(1):7. PubMed ID: 24581042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering REST-Specific Synthetic PUF Proteins to Control Neuronal Gene Expression: A Combined Experimental and Computational Study.
    Criscuolo S; Gatti Iou M; Merolla A; Maragliano L; Cesca F; Benfenati F
    ACS Synth Biol; 2020 Aug; 9(8):2039-2054. PubMed ID: 32678979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding the binding specificity for RNA recognition by a PUF domain.
    Zhou W; Melamed D; Banyai G; Meyer C; Tuschl T; Wickens M; Cao J; Fields S
    Nat Commun; 2021 Aug; 12(1):5107. PubMed ID: 34429425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A FACS-based screening strategy to assess sequence-specific RNA-binding of Pumilio protein variants in E. coli.
    Kellermann SJ; Rentmeister A
    Biol Chem; 2017 Jan; 398(1):69-75. PubMed ID: 27682713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization.
    Qiu C; McCann KL; Wine RN; Baserga SJ; Hall TM
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18554-9. PubMed ID: 25512524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-type specific regulator RBPMS switches alternative splicing via higher-order oligomerization and heterotypic interactions with other splicing regulators.
    Yang Y; Lee GC; Nakagaki-Silva E; Huang Y; Peacey M; Partridge R; Gooding C; Smith CWJ
    Nucleic Acids Res; 2023 Oct; 51(18):9961-9982. PubMed ID: 37548402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TRAP150 interacts with the RNA-binding domain of PSF and antagonizes splicing of numerous PSF-target genes in T cells.
    Yarosh CA; Tapescu I; Thompson MG; Qiu J; Mallory MJ; Fu XD; Lynch KW
    Nucleic Acids Res; 2015 Oct; 43(18):9006-16. PubMed ID: 26261210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinated regulation of transcription and alternative splicing by the thyroid hormone receptor and its associating coregulators.
    Satoh T; Katano-Toki A; Tomaru T; Yoshino S; Ishizuka T; Horiguchi K; Nakajima Y; Ishii S; Ozawa A; Shibusawa N; Hashimoto K; Mori M; Yamada M
    Biochem Biophys Res Commun; 2014 Aug; 451(1):24-9. PubMed ID: 25019984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.