These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 28518188)

  • 21. FTIR study of the photoisomerization processes in the 13-cis and all-trans forms of Anabaena sensory rhodopsin at 77 K.
    Kawanabe A; Furutani Y; Jung KH; Kandori H
    Biochemistry; 2006 Apr; 45(14):4362-70. PubMed ID: 16584171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of Anabaena sensory rhodopsin is influenced by different codons of seven residues at the N-terminal region.
    Tsogbadrakh O; Choi AR; Jung KH
    Protein Expr Purif; 2018 Nov; 151():1-8. PubMed ID: 29793033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of an Inward Proton-Transporting Anabaena Sensory Rhodopsin Mutant: Mechanistic Insights.
    Dong B; Sánchez-Magraner L; Luecke H
    Biophys J; 2016 Sep; 111(5):963-72. PubMed ID: 27602724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I.
    Rath P; Spudich E; Neal DD; Spudich JL; Rothschild KJ
    Biochemistry; 1996 May; 35(21):6690-6. PubMed ID: 8639619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Anabaena sensory rhodopsin transducer defines a novel superfamily of prokaryotic small-molecule binding domains.
    De Souza RF; Iyer LM; Aravind L
    Biol Direct; 2009 Aug; 4():25; discussion 25. PubMed ID: 19682383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of chloride ion binding on the photochemical properties of sensory rhodopsin II from Natronomonas pharaonis.
    Tamogami J; Iwano K; Matsuyama A; Kikukawa T; Demura M; Nara T; Kamo N
    J Photochem Photobiol B; 2014 Dec; 141():192-201. PubMed ID: 25463667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Point Mutation of Anabaena Sensory Rhodopsin Enhances Ground-State Hydrogen Out-of-Plane Wag Raman Activity.
    Roy PP; Abe-Yoshizumi R; Kandori H; Buckup T
    J Phys Chem Lett; 2019 Mar; 10(5):1012-1017. PubMed ID: 30742765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transient dissociation of the transducer protein from anabaena sensory rhodopsin concomitant with formation of the M state produced upon photoactivation.
    Kondoh M; Inoue K; Sasaki J; Spudich JL; Terazima M
    J Am Chem Soc; 2011 Aug; 133(34):13406-12. PubMed ID: 21774544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 100 fs photo-isomerization with vibrational coherences but low quantum yield in Anabaena Sensory Rhodopsin.
    Cheminal A; Léonard J; Kim SY; Jung KH; Kandori H; Haacke S
    Phys Chem Chem Phys; 2015 Oct; 17(38):25429-39. PubMed ID: 26365012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: application to Anabaena Sensory Rhodopsin.
    Ward ME; Brown LS; Ladizhansky V
    J Magn Reson; 2015 Apr; 253():119-28. PubMed ID: 25637099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafast photochemistry of anabaena sensory rhodopsin: experiment and theory.
    Schapiro I; Ruhman S
    Biochim Biophys Acta; 2014 May; 1837(5):589-97. PubMed ID: 24099700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photo-induced regulation of the chromatic adaptive gene expression by Anabaena sensory rhodopsin.
    Irieda H; Morita T; Maki K; Homma M; Aiba H; Sudo Y
    J Biol Chem; 2012 Sep; 287(39):32485-93. PubMed ID: 22872645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photochromism of Anabaena sensory rhodopsin.
    Kawanabe A; Furutani Y; Jung KH; Kandori H
    J Am Chem Soc; 2007 Jul; 129(27):8644-9. PubMed ID: 17569538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ structural studies of Anabaena sensory rhodopsin in the E. coli membrane.
    Ward ME; Wang S; Munro R; Ritz E; Hung I; Gor'kov PL; Jiang Y; Liang H; Brown LS; Ladizhansky V
    Biophys J; 2015 Apr; 108(7):1683-1696. PubMed ID: 25863060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Paramagnetic relaxation enhancement reveals oligomerization interface of a membrane protein.
    Wang S; Munro RA; Kim SY; Jung KH; Brown LS; Ladizhansky V
    J Am Chem Soc; 2012 Oct; 134(41):16995-8. PubMed ID: 23030813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing ultrafast photochemistry of retinal proteins in the near-IR: bacteriorhodopsin and anabaena sensory rhodopsin vs retinal protonated Schiff base in solution.
    Wand A; Loevsky B; Friedman N; Sheves M; Ruhman S
    J Phys Chem B; 2013 Apr; 117(16):4670-9. PubMed ID: 23140223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-range nature of the interactions between titratable groups in Bacillus agaradhaerens family 11 xylanase: pH titration of B. agaradhaerens xylanase.
    Betz M; Löhr F; Wienk H; Rüterjans H
    Biochemistry; 2004 May; 43(19):5820-31. PubMed ID: 15134456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eubacterial rhodopsins - unique photosensors and diverse ion pumps.
    Brown LS
    Biochim Biophys Acta; 2014 May; 1837(5):553-61. PubMed ID: 23748216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apparent pKa shifts of titratable residues at high denaturant concentration and the impact on protein stability.
    Marti DN
    Biophys Chem; 2005 Dec; 118(2-3):88-92. PubMed ID: 16054747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of acidic amino acid residues in the structural stability of snake cardiotoxins.
    Chiang CM; Chang SL; Lin HJ; Wu WG
    Biochemistry; 1996 Jul; 35(28):9177-86. PubMed ID: 8703923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.