These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 28518230)

  • 1. MO-F-213AB-01: Improving Dose Uniformity in Patch-Field Proton Therapy Using Beam Current Modulation.
    Hill P; Klein E; Bloch C
    Med Phys; 2012 Jun; 39(6Part21):3871. PubMed ID: 28518230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing field patching in passively scattered proton therapy with the use of beam current modulation.
    Hill PM; Klein EE; Bloch C
    Phys Med Biol; 2013 Aug; 58(16):5527-39. PubMed ID: 23880635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MO-F-213AB-02: Correcting Spread-Out Bragg Peak Slope Using Time-Resolved Monte Carlo Simulations and Beam Current Modulation.
    Hill P; Klein E; Bloch C
    Med Phys; 2012 Jun; 39(6Part21):3871-3872. PubMed ID: 28518275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TOPAS Simulation of the Mevion S250 compact proton therapy unit.
    Prusator M; Ahmad S; Chen Y
    J Appl Clin Med Phys; 2017 May; 18(3):88-95. PubMed ID: 28444840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility studies of a passive scatter proton therapy nozzle without a range modulator wheel.
    Harvey MC; Polf JC; Smith AR; Mohan R
    Med Phys; 2008 Jun; 35(6):2243-52. PubMed ID: 18649454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SU-E-T-471: Beam Properties of an In-Room Proton Therapy Accelerator.
    Bloch C; Hill P; Klein E
    Med Phys; 2012 Jun; 39(6Part17):3813. PubMed ID: 28517477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SU-E-T-474: Monte Carlo Phase Space Production to Model Magnetically Scanned Proton Beams for IMPT.
    Titt U; Mirkovic D; Perles L; Sell M; Peeler C; Liu A; Mohan R
    Med Phys; 2012 Jun; 39(6Part17):3814. PubMed ID: 28517438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast range switching of passively scattered proton beams using a modulation wheel and dynamic beam current modulation.
    Sánchez-Parcerisa D; Pourbaix JC; Ainsley CG; Dolney D; Carabe A
    Phys Med Biol; 2014 Apr; 59(7):N19-26. PubMed ID: 24625619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton microbeam radiotherapy with scanned pencil-beams--Monte Carlo simulations.
    Kłodowska M; Olko P; Waligórski MP
    Phys Med; 2015 Sep; 31(6):621-6. PubMed ID: 25982232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations in proton scanned beam dose delivery due to uncertainties in magnetic beam steering.
    Peterson S; Polf J; Ciangaru G; Frank SJ; Bues M; Smith A
    Med Phys; 2009 Aug; 36(8):3693-702. PubMed ID: 19746802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of lateral penumbra for uniform scanning proton beams under various beam delivery conditions and comparison to the XiO treatment planning system.
    Rana S; Zeidan O; Ramirez E; Rains M; Gao J; Zheng Y
    Med Phys; 2013 Sep; 40(9):091708. PubMed ID: 24007141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quality assurance of proton beams using a multilayer ionization chamber system.
    Dhanesar S; Sahoo N; Kerr M; Taylor MB; Summers P; Zhu XR; Poenisch F; Gillin M
    Med Phys; 2013 Sep; 40(9):092102. PubMed ID: 24007171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial correlation of proton irradiation-induced activity and dose in polymer gel phantoms for PET/CT delivery verification studies.
    Lopatiuk-Tirpak O; Su Z; Li Z; Hsi W; Meeks S; Zeidan O
    Med Phys; 2011 Dec; 38(12):6483-8. PubMed ID: 22149831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetric properties of a proton beamline dedicated to the treatment of ocular disease.
    Slopsema RL; Mamalui M; Zhao T; Yeung D; Malyapa R; Li Z
    Med Phys; 2014 Jan; 41(1):011707. PubMed ID: 24387499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation.
    Faddegon BA; Shin J; Castenada CM; Ramos-Méndez J; Daftari IK
    Med Phys; 2015 Jul; 42(7):4199-210. PubMed ID: 26133619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of lateral beam profile modifications in scanned proton and carbon ion therapy: a Monte Carlo study.
    Parodi K; Mairani A; Brons S; Naumann J; Krämer M; Sommerer F; Haberer T
    Phys Med Biol; 2010 Sep; 55(17):5169-87. PubMed ID: 20714044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the initial beam parameters in Monte Carlo linac simulation.
    Aljarrah K; Sharp GC; Neicu T; Jiang SB
    Med Phys; 2006 Apr; 33(4):850-8. PubMed ID: 16696460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel patch-field design using an optimized grid filter for passively scattered proton beams.
    Li Y; Zhang X; Dong L; Mohan R
    Phys Med Biol; 2007 Jun; 52(12):N265-75. PubMed ID: 17664545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation.
    O'Shea TP; Foley MJ; Faddegon BA
    Med Phys; 2011 Jun; 38(6):3260-9. PubMed ID: 21815400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of array-type prompt gamma measurement system for in vivo range verification in proton therapy.
    Min CH; Lee HR; Kim CH; Lee SB
    Med Phys; 2012 Apr; 39(4):2100-7. PubMed ID: 22482631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.